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Abstract—The problem of downlink power minimization given
user rate requirements has been solved optimally in [12], [13].
However, due to the non-linear nature of the problem, convex
optimization techniques have to be used, resulting in a high
computational complexity. In this paper, the power minimization
problem using dirty paper coding (DPC) is investigated. The
SNR is distributed equally among the subchannels of each user
to reduce each user’s transceiver complexity, through the use
of equal-rate modulation. The zero-forcing (ZF)-DPC problem
is considered, therefore facilitating a closed form solution and
resulting in a simple implementation. The optimum encoding
order can be found with limited computations. To further reduce
the complexity, a simple suboptimal method for finding the
encoding order is given. This method is shown to have a sum
power very close to the ZF-optimal power. The advantages of
the methods proposed are their non-iterative nature and much
reduced computational complexity.

I. INTRODUCTION

Recently, the geometric mean decomposition (GMD) [1] has
been proposed for point-to-point communications, assuming
channel state information at the transmitter (CSIT). Combined
with non-linear techniques such as decision-feedback equal-
ization (DFE) or dirty paper coding (DPC), a multiple-input
multiple-output (MIMO) channel is decomposed into multiple
identical subchannels. Therefore the same constellation can be
used on different subchannels, greatly reducing the transceiver
complexity. For a MIMO broadcast channel (BC), with CSIT,
GMD has been generalized to block-diagonal (BD)-GMD
[6],[7]. When combined with DPC, a MIMO broadcast channel
creates subchannels with identical SNRs for each user. The
rates for different users may be different, or may even be
constrained to be equal. Rate-maximizing transceiver designs
based on the BD-GMD are described in [7].

In practical scenarios, users may be placed at different
distances from the base station (BS), resulting in different
variances for each independent user’s channel matrix. Fur-
thermore, users may have subscribed to plans of different
data rates. Therefore, practical precoding schemes have to take
that into consideration. In a cellular system, users experience
interference from the BS of neighbouring cells. Consequently,
an important question to answer is how to minimize the
transmit power of each individual BS, while maintaining the
rate requirements for the group of users currently served. This
would help to reduce the interference that each BS produces to

neighbouring cells, and as a result improve the whole cellular
system’s performance.

The power minimization problem has been solved in [10]
for the case of users with a single antenna each. However,
choosing the optimal ordering becomes complicated for more
than three users. Convex optimization [8],[9] offers iterative
methods to solve several non-linear communications problems.
Using the uplink-downlink duality [2],[3],[4],[5], as well as
convex optimization techniques, [12], [13] and [14] are key
papers that address the power minimization problem, for the
case of users with multiple antennas. [11] develops broadcast
schemes to satisfy each user’s minimum data rate and maxi-
mum BER requirements. This is done by considering virtual
rate requirements that account for the SNR gap when using
QAM and Tomlinson-Harashima precoding (THP).

For the methods mentioned above, while convex optimiza-
tion may provide the optimal solution, the complexity is
still very high, compared to a closed form solution. (The
optimal method is referred to as interference-balancing (IB),
as opposed to zero-forcing (ZF), since noise is taken into
account, and interference is allowed between the subchannels.
Generally, IB techniques are more difficult to implement
than ZF ones, but have a better performance for the low
SNR region.) Solutions have to be found, that are simple to
implement in terms of computational complexity, and yet have
a reasonable performance compared to the optimal solution.
The difficulty with convex programming is that a substantial
number of iterations have to be performed before the optimal
solution is found. Each iteration itself may contain a large
amount of computation that may not be visible from a simple
complexity order expression. Additionally, the number of
iterations required for handling each channel realization is
random and not easily predictable.

Since iterative solutions suffer from the weaknesses men-
tioned earlier, the challenge is to find simple solutions that
approach the optimal. Although suboptimal, these solutions
help in reducing the complexity of the hardware. In this
paper, efficient non-iterative precoding methods are designed
to minimize the total transmit power for the MIMO BC,
subject to individual rate constraints. Furthermore, the solution
to generating subchannels with identical SNRs for each user
is provided.



Firstly, for a fixed encoding order, the DPC problem is
considered for the case when interference between all the
subchannels is completely presubtracted. This ZF scenario is
considered as is permits a closed form solution for the power
minimization. Next, the optimal encoding order is derived.
Although this may be suboptimal compared to the ordering
found for the IB-optimal solution, the main advantage is that
this ordering can be computed with a finite and predictable
complexity, and has been shown to be computed much faster
than that for the IB solution.

In order to decrease the complexity even further, three more
simplified methods are proposed to find the user ordering that
approach the performance of this ZF-optimal ordering. It is
seen that by combining the three simplified methods, the power
for the ZF-optimal solution can be reached very closely.
Notations:

Let IN denote the N × N identity matrix. Let diag(L)
denote the diagonal matrix with elements from the main
diagonal of L. Let A = blkd(A1,A2, . . . ,AK) represent the
block-diagonal matrix of the form

A =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AK

 . (1)

II. CHANNEL MODEL

Given a cellular-type system with one BS and K mobile
users, consider the broadcast channel from the BS to the
mobile users. The BS is equipped with NT antennas, and the
i-th mobile user has ni antennas. Let NR =

∑K
i=1 ni be the

total number of receive antennas, where NT ≥ NR. The input-
output relation can be represented as

y = Hx + u , (2)

where x is the NT × 1 transmit signal vector at the BS, y
the NR × 1 receive signal vector with y = [yT

1 , · · · ,yT
K ]T ,

and each yi the ni × 1 receive signal vector of user i.
Multiplexing is considered, where user i has ni data-bearing
subchannels. The SNR for every subchannel of user i is set
equal to γi. H = [HT

1 , . . . ,HT
K ]T , where each Hi is the

channel of user i. Assume that the noise vector u is zero-
mean circularly symmetric complex Gaussian (CSCG) with
E[uuH ] = N0I, and u is independent of x. Assume also that
E[‖x‖2] = Es and H is full rank. Denote this downlink model
by NT × [n1, . . . , nK ].

III. POWER MINIMIZATION FOR A FIXED ARBITRARY

ORDERING

In this section, a ZF-based block-equal-rate transceiver
scheme that applies DPC at the transmitter and allocates power
according to SNR requirements is presented. Since there is a
simple relationship between the rate and the SNR for each
subchannel,

Ri = log2(1 + ρi) , (3)

rate requirements can easily be translated into SNR require-
ments. First assume that the encoding order of the users has
been determined. This scheme minimizes the transmit power
with the constraint of zero inter-user interference (IUI). Linear
receive equalization is performed by a block diagonal matrix
A, where A = blkd(A1,A2, . . . ,AK), and each block Ai is
the receive equalization matrix of user i. It has been shown
[6] that a BD-GMD can be done on a matrix H such that

H = PLQH , (4)

where P = blkd(P1,P2, . . . ,PK), each Pi is ni×ni unitary,
QHQ = INR

, and L is a square lower triangular matrix
with elements equal in blocks of n1, . . . , nK elements (termed
“block-equal-diagonal”).

The problem of power minimization can be formulated as

minimize Tr(FHF)
subject to B ∈ L , A ∈ B

AHF =
√

N0Γ1/2B

‖A(i, :)‖ = 1 for 1 ≤ i ≤ NR . (5)

where L is the set of all lower triangular matrices with
unit diagonal, B is the set of all block diagonal matrices
of the form in (1), F is the precoder and Γ is the diagonal
matrix of SNR requirements. Γ = blkd(Γ1, . . . ,ΓK), where
Γi = γiIni

.

Theorem 1: Let H = PLQH be the BD-GMD of H, and
let Λ = diag(L). Λ = blkd(Λ1, . . . ,ΛK), where Λi = riIni

for some ri. Then, (5) is solved by

Ω =
√

N0Γ1/2Λ−1 , F = QΩ ,

B = Ω−1Λ−1LΩ , A = PH . (6)

Proof: See Appendix 1.
Here, Ω is the diagonal power allocation matrix, Ω =
blkd(Ω1, . . . ,ΩK), where Ωi = ωiIni

. The minimum power
required is thus

Es = Tr(FHF) = Tr(Ω2) . (7)

IV. USER ORDERING

The encoding order of the users affects the total transmis-
sion power. Let {π1, π2, . . . , πK} be the optimum encoding
order, where the previous π1-th user is now the first user, and
so on. As the ordering of the users results in ordering the
rows of H, this can be represented by a multiplication by a
permutation matrix, D, such that DH = PLQH . Here, the
i-th block Pi of P has dimensions nπi

× nπi
.

To find the optimum user ordering that minimizes the trans-
mit power, an exhaustive search over all ordering permutations
can be applied. An “exhaustive search” may seem like a large
number, but the advantage of this method over other iterative
methods is that the computations involved are much less. The
best (ZF) ordering can be found over a hundred times faster
than by using the optimum iterative method [12].



Yet, to reduce the complexity even further, three simple
algorithms to find the near-optimal encoding order will be
proposed. These can be done even before performing the BD-
GMD or DPC. These methods are non-iterative, and do not
involve convex optimization procedures. They proceed in a
successive “top-down” manner, from user 1 to user K.

A. Method 1: Successive Closest Match

From (6), det(Ω) is a constant determined by Γ and H.
Seeing from (7) that Es is minimized when the diagonal values
of Ω are equal, Λ is designed such that it is close to a scalar
multiple of Γ1/2. Let this desired matrix be M, where M =
blkd(M1, . . . ,MK), and Mi = miIni

. To ensure that the
determinants of HHH and M2 match, define

M = Γ1/2 · 2NR

√
det(HHH)

det(Γ)
. (8)

Since P is block-diagonal unitary, Q is unitary and L is lower
triangular, the diagonal elements in Λi is given by

ri = 2ni

√
det(Λ2

i ) = 2ni

√√√√ det(ĤiĤH
i )

det(Ĥi−1ĤH
i−1)

, (9)

where Ĥi = [HT
1 , . . . ,HT

i ]T . It is preferred that ri be ‘close’
to mi. From (9), it is seen that r1 is independent of the
ordering of the last K−1 users. Thus, H1 can first be chosen
such that r1 is close to m1. Following this, H2 is chosen such
that r2 is close to m2 and so on. A more precise method to
determine ‘closeness’ will be given next. From (8), the sum
power required is

Es = Tr(Ω2) = N0
NR

√
det(Γ)

det(HHH)
Tr
(

M2

Λ2

)
, (10)

where a matrix can be placed in the denominator for conve-
nience because it is diagonal. Minimizing Es is the same as
minimizing

Tr
(

M2

Λ2

)
= Tr

(
M2

1

Λ2
1

)
+ Tr

(
M̌2

2

Λ̌2
2

)
, (11)

where M̌i = blkd(Mi, . . . ,MK) and Λ̌i =
blkd(Λi, . . . ,ΛK). We have

det
(

M2

Λ2

)
= 1 = det

(
M2

1

Λ2
1

)
· det

(
M̌2

2

Λ̌2
2

)
, (12)

In general, for this “top-down” approach, the effect of choos-
ing a particular Λ1 on the following Λi’s is not known. Let
the best-case Λ̌2 to minimize (11) given Λ1 be Λ̃2.

M̌2
2

Λ̃2
2

= Iň2 · ň2

√
det
(

Λ2
1

M2
1

)
(13)

where ňi =
∑K

j=i nj . Therefore (11) is equivalent to

n1
n1

√
det
(

M2
1

Λ2
1

)
+ ň2

ň2

√
det
(

Λ2
1

M2
1

)
. (14)

Since det(Λ2
1) can be found from H1 using (9), H1 is

chosen to minimize (14). Next, the selection of users 2 to
K will be described.

Define M̂i = blkd(M1, . . . ,Mi) and Λ̂i =
blkd(Λ1, . . . ,Λi). For the i-th user, since Λ̂i−1 has
been determined, minimizing Es is equivalent to minimizing

Tr
(

M2
i

Λ2
i

)
+ Tr

(
M̌2

i+1

Λ̌2
i+1

)
. (15)

Again, we have

1 = det
(

M2

Λ2

)
= det

(
M̂2

i−1

Λ̂2
i−1

)
· det

(
M2

i

Λ2
i

)
· det

(
M̌2

i+1

Λ̌2
i+1

)
, (16)

so the best-case Λ̌i+1 to minimize (15) is Λ̃i+1, where

M̌2
i+1

Λ̃2
i+1

= Iňi+1 · ňi+1

√√√√det

(
Λ̂2

i−1

M̂2
i−1

)
det
(

Λ2
i

M2
i

)
(17)

Therefore (15) is equivalent to

ni
ni

√
det
(

M2
i

Λ2
i

)
+ ňi+1

ňi+1

√√√√det

(
Λ̂2

i−1

M̂2
i−1

)
det
(

Λ2
i

M2
i

)
(18)

Also, det(Λ2
i ) can be calculated from Hi using (9), where the

value det(Ĥi−1ĤH
i−1) has already been found from the earlier

step. Hi is chosen to minimize (18), and so on until user K,
where there is only 1 choice. Thus, let this method be called
successive closest match (SCM).

B. Method 2: Minimize ri

When users have equal channel strengths, the unordered
BD-GMD, which is basically a QR decomposition, PHH =
LQH , usually has the first diagonal element of L much larger
than the last element. If equal SNRs are desired for each
user, which is usually the case, minimizing the first diagonal
element tends to decrease the spread in the diagonal values of
L.

Therefore, this method can be stated simply. Starting from
user 1, using (9), Hi is chosen to minimize ri, and so on for
users 2 to K.

C. Method 3: Minimize Channel Strength

Consider the case where users are at different distances
from the base station, resulting in different channel strengths.
Suppose equal SNRs are desired for each user. In the dual
uplink channel, it is expected that user with the weakest
channel should be decoded last, in order to improve his
achievable rate. In the downlink, this corresponds to encoding
the user with the weakest channel first.

Thus, again starting from user 1, Hi is chosen to minimize
Tr(HiHH

i )/ni, and so on until user K.



D. ‘Best Choice’ Method

Simulations show that for different settings of user channel
strengths, user antenna numbers and user SNR requirements,
different methods are best for minimizing the total transmit
power. Usually, method 1 (SCM) gives the best performance.
Due to the reasons mentioned in sections IV-B and IV-C,
methods 2 or 3 may perform the best. In fact, there is a slight
possibility that a particular original ordering is already optimal.

Therefore, it makes sense to select the best of methods 1 to
3 as well as the original ordering.

V. COMPUTATIONAL COMPLEXITY

To find the optimum user ordering that minimizes the total
transmit power, an exhaustive search across all the user permu-
tations can be done. For K users, there are K! permutations.
For each permutation, K determinants has to be calculated
based on (9), before the transmit power can be evaluated using
(10), resulting in a total of KK! determinant calculations.
Since the value of ri is independent of the ordering of the
first i − 1 users, the number of determinants to be calculated
can be reduced to

Nd = K!
K−1∑
i=0

1
i!

. (19)

On the other hand, the number of determinants to calculate
for the proposed SCM method is

Ns =
K∑

i=1

i =
K(K + 1)

2
. (20)

Note that the calculation of the determinants of M2
i , 1 ≤ i ≤

K, have been omitted as they are diagonal matrices. Also, in
(18), det(Λ̂2

i−1) can be found from

det(Λ̂2
i−1) = det(Λ̂2

i−2) det(Λ2
i−1) (21)

where the two terms on the right have already been calculated
in the previous step.

Method 2 (min ri) also requires Ns number of determinant
calculations. Method 3 (min chan) is the simplest, without
requiring any determinant calculations.

The ‘best choice’ method is interesting. Since it is a
composition of methods 1 to 3, the number of determinants to
be computed is 2Ns. An additional 4K determinants have to
be calculated to find ri using (9). Following that, (10) can be
evaluated to find the minimum power of all these 4 orderings.
Finally the BD-GMD is applied to the best ordering. The
complexity of the BD-GMD is only K times as high as the
GMD [1].

VI. SIMULATION RESULTS

Consider the NT ×[n1, . . . , nK ] downlink scenario. Let n =
[n1, . . . , nK ] be the antenna numbers of the users. Let γ =
[γ1, . . . , γK ] be the vector of SNR requirements for each user.
Let c = [c1, . . . , cK ] be the channel strengths of each user.
The elements of the channel matrix of user i are modelled as
i.i.d. zero-mean CSCG with variance ci.

Figures 1 to 6 show the simulation results. 300 Monte Carlo
trials are performed for each value of γ. In general, method
1 (SCM) performs the best, followed by method 2 (min ri),
then method 3 (min chan), although settings have been found
in which method 2 or method 3 performs best. The figures are
chosen to give the most general settings encountered.

For figures 1 to 4, the channel strengths for each user
are set equal, i.e. c = [1, 1, 1, 1, 1, 1]. Fig. 1 represents the
case of 2 antennas per user, and equal SNR requirements.
Fig. 2 shows the case where different users have different
SNR requirements, for example if they have subscribed to
plans of different data rates. Fig. 3 is more general, when
users can have 4, 2, or 1 antennas. In Fig. 4, the user with
more antennas is assigned a lower SNR requirement. This is
reasonable because more data streams are permitted for this
user, so each stream is allowed to have a lower data rate, if
the rates for the different users are comparable. Fig. 5 presents
the case similar to Fig. 1, but this time with varying channel
strengths. This represents the practical scenario where users
are positioned at varying distances from the BS. Fig. 6 is a
generalization where users have different antenna numbers and
different SNR requirements.

VII. CONCLUSION

The optimal solution to the broadcast power minimiza-
tion problem given user SINR requirements has been solved
optimally using iterative methods and convex optimization.
However, these methods are computationally expensive, as
mentioned in the introduction. A major hurdle for MIMO
systems is the high complexity involved.

In this paper, the problem of the ZF power minimization
using DPC is formulated and solved in a closed form expres-
sion, using the BD-GMD. The optimal ordering can be found
much faster than for the optimal IB method. To speed up the
process of obtaining the best ordering, sub-optimal methods
have been proposed. The methods have been shown to reach
the ZF-optimal power very closely.
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APPENDIX A
PROOF OF THEOREM 1

Proof: The Lagrangian L (F,A,α, ρ̃,µ) for problem (5)
is

Tr(FHF + Re(ρ̃H(AHF −
√

N0Γ1/2)) + µ(AAH − I)) ,
(22)

where ρ̃, µ are Lagrange multipliers, ρ̃ an upper triangular
complex matrix, µ a real-valued diagonal matrix, and Re(X)



the real-part of a complex matrix X. If F and A are optimal,
then they satisfy

∇FL = 2F + (AH)H ρ̃ = 0 (23)

∇Ai
L = [ρ̃(HF)H ]i + 2µiAi = 0 for 1 ≤ i ≤ K (24)

where Ai, µi and [(ρ̃HF)H ]i are the i-th diagonal block of
each matrix respectively. Begin by letting ρ = − 1

2 ρ̃, also
upper triangular. From (23),

F = HHAHρ . (25)

Define J̄ =
√

N0Γ1/2B, a lower triangular matrix. From (24),

µiAiA
H
i =

[
−1

2
ρ̃FHHH

]
i

AH
i

= [ρFHHH ]iAH
i

= [ρFHHHAH ]i
= [ρJ̄H ]i . (26)

Since µi is diagonal, AiA
H
i is upper triangular. As AiA

H
i

is also hermitian, it has to be diagonal. Together with the
constraint of unit row norm of A, it follows that A is unitary.
Likewise,

(J̄H)ρ = (FHHHAH)ρ

= FHF . (27)

Since FHF is upper triangular and hermitian, it is diagonal.

FHF = diag(ρ)
√

N0Γ1/2 . (28)

As the diagonal elements of FHF are positive real, the
diagonal elements of ρ are also positive real. Define

Λ̄ = (FHF)−1/2 , (29)

where Λ̄ is a diagonal matrix of positive real entries. Therefore

(FΛ̄)H(FΛ̄) = I , (30)

Let the unitary matrix FΛ̄ be denoted by Q̄. Then by (5),

AHFΛ̄ = AHQ̄ = J̄Λ̄ (31)

H = AH(J̄Λ̄)Q̄H , (32)

where J̄Λ̄ is lower triangular. Let L̄ = J̄Λ̄. So diag(L̄) =√
N0Γ1/2Λ̄. Denote each diagonal block of L̄ corresponding

to user i as [L̄]i. It follows that

det([L̄]i) = det([J̄]i) det([Λ̄]i)

= (
√

N0γi)ni det([Λ̄]i) . (33)

Define Ĥi = [HT
1 , . . . ,HT

i ]T . Since A is block diagonal
unitary and Q̄ is unitary, it can be seen that

det([L̄]i) =

√√√√ det(ĤiĤH
i )

det(Ĥi−1ĤH
i−1)

. (34)

Thus det([Λ̄]i) is a constant determined by the H, γi and ni.
Recall from (7) and (30) that the power needed is

Es = Tr(FHF) = Tr(Λ̄−2) . (35)

Therefore, Es will be minimized when the diagonal elements
of [Λ̄]i are equal. Since the diagonal elements of [J̄]i are equal,
the same is true for the diagonal values of [L̄]i. Therefore,
from (32), and the BD-GMD decomposition, H = PLQH ,

L̄ = J̄Λ̄ = L , Q̄ = Q , A = PH , (36)

where

Λ̄ = diag(J̄)−1diag(L) = (
√

N0Γ1/2)−1Λ . (37)

Define

Ω = Λ̄−1 =
√

N0Γ1/2Λ−1 . (38)

Finally,

F = QΩ ,

B = (
√

N0Γ1/2)−1LΛ̄−1 = Ω−1Λ−1LΩ (39)

completes the solution to (5).
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Fig. 1. 12 × [2, 2, 2, 2, 2, 2], γ = [γ, γ, γ, γ, γ, γ].
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Fig. 2. 12 × [2, 2, 2, 2, 2, 2], γ = [γ/2, γ/2, γ, γ, 2γ, 2γ].
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Fig. 3. 12 × [4, 2, 2, 2, 1, 1], γ = [γ, γ, γ, γ, γ, γ].
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Fig. 4. 12 × [4, 2, 2, 2, 1, 1], γ = [γ/2, γ, γ, γ, 2γ, 2γ].

5 6 7 8 9 10 11 12 13 14 15
8

10

12

14

16

18

20

22

gamma (dB)

E
s/N

0 (
dB

)

 

 

unordered
1: SCM
2: min r

i

3: min chan
ZF−optimal

Fig. 5. c = [1.5, 1.5, 1, 1, 0.5, 0.5], 12 × [2, 2, 2, 2, 2, 2],
γ = [γ, γ, γ, γ, γ, γ].
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Fig. 6. c = [1, 1.5, 1, 0.5, 1.5, 0.5], 12 × [4, 2, 2, 2, 1, 1],
γ = [γ/2, γ, γ, γ, 2γ, 2γ].


