
Febrile Fits Monitor Abstract
i

Abstract

For children less than three years old, febrile fits are a very common problem.

Febrile fits are convulsions that the child may experience, if the child has fever, and

if the child is not treated quickly. In this project, a “Febrile Fits Monitor” was

developed. It is a setup that involves wireless monitoring of the child’s temperature.

If the child starts to have a high temperature, the remote monitoring device will alert

the parent, to attend to the child. In this way, febrile fits are stopped before they

happen. The setup consists of 2 small devices, the Child’s Unit and the Parent’s Unit.

They can operate independently of the PC. In addition, if the parents wish to monitor

the temperature of their child while they are at work, they can connect the Parent’s

Unit to the PC at home and run a program to have the data constantly sent to a

website. They will be able to view a chart of their child’s temperature over the

internet.

Febrile Fits Monitor Acknowledgments
ii

Acknowledgments

There are times when the problems we face seem insurmountable. Things just do not

work as they should be. It is times like this that we should just put our trust in God.

He will lead you to people who can help you and advise you. He will lead you to

answers.

I would like to thank my friends and family members for giving me support and

encouragement throughout my project. David Tan has helped me to make my

internet temperature monitoring possible. Rush, Amanda, Fazli, and Kim Piau are

some of the people who have provided advice to help me get started quickly, and to

overcome difficulties. Thanks also to Jalil who made my PCB’s. Lively exchanges

over lunch were made with Gim Hoe and Yaneng; for that and their friendship I am

deeply grateful.

I am greatly indebted to my supervisor, Prof. Ko Chi Chung, and examiner, Prof.

Srinivasan Vikram, for giving numerous criticisms and suggestions for improvement.

It has indeed helped to make my system more robust.

To all my loved ones, thanks for all the support.

Febrile Fits Monitor Contents
iii

Contents

Abstract ...i

Acknowledgments..ii

List of Figures ..vii

List of Tables ..ix

Chapter 1 Introduction..1

1.1 Febrile Fits in Children ..1

1.2 Febrile Fits Monitor ...2

Chapter 2 Child’s Unit..3

Chapter 3 Parent’s Unit (Portable device) ..5

Chapter 4 Choice of Microcontrollers ..6

4.1 PIC Microcontrollers..6

4.2 BasicX Microcontrollers ..8

Chapter 5 BasicX..10

5.1 Making a BasicX Program...11

5.2 Execution of the Program ..12

5.3 Troubleshooting Programs...12

5.4 Software Switch Debouncing...13

5.5 Power Requirements of the BX-24 ..13

Chapter 6 BasicX-24 Microprocessor ..14

6.1 BasicX Processor ...14

Febrile Fits Monitor Contents
iv

6.2 SPI EEPROM Chip..15

6.3 Serial Port...15

6.4 Low Voltage Monitor...15

6.5 Analogue to Digital Converter ...16

6.6 BX-24 Technical Specifications ..16

Chapter 7 Digital Thermometer..18

7.1 DS1620...18

7.2 Pin Assignment ..18

7.3 3–Wire Communications ...18

Chapter 8 Thermistor ..20

8.1 Advantages of a Thermistor ...20

8.2 Properties of Thermistors...20

8.3 Steinhart-Hart Thermistor Equation: ...21

8.4 Thermistor Used...24

8.5 Calculations..26

Chapter 9 AM Transmitter and Receiver..28

9.1 TWS-434..28

9.2 RWS-434..29

9.3 Disadvantages ..30

Chapter 10 FM Transmitter and Receiver ..31

10.1 Choice of Transmitter and Receiver ..31

10.2 Description ...32

10.3 Functional Properties ...33

10.4 Troubleshooting Automatic Gain Control ...36

Chapter 11 Web Management Proposal ...38

Febrile Fits Monitor Contents
v

11.1 Introduction..38

11.2 Operation at Local PC..39

11.3 User Registration from Local PC...39

11.4 User Login from Local PC...42

11.5 User Login at remote PC..43

11.6 Server Temperature Databases...43

11.7 Difficulty Faced ...44

Chapter 12 Monitoring over the Internet ..45

12.1 Excel Visual Basic ...45

12.2 Viewing from a Web Browser ...47

12.3 Troubleshooting TimerModule ..49

12.4 Troubleshooting FMain..50

Chapter 13 Assembly..51

13.1 Mock-up Boards...51

13.2 Selecting the Boxes..54

13.3 Machining the Boxes ...54

13.4 PCB Design..55

13.5 Troubleshooting ...57

13.6 Final Assembly ..58

Chapter 14 Conclusions..61

Appendix A Source Codes for Microcontrollers ..63

A.1 Code for Transmitter ..63

A.2 Code for Receiver ..66

A.3 Code for LCD Display ...72

A.4 Code for DS1620 Temperature Sensor ..74

Febrile Fits Monitor Contents
vi

Appendix B Source Codes for Excel Visual Basic ..77

B.1 Code for Module: StartForm..77

B.2 Code for Form: FMain ...78

B.3 Code for Module: TimerModule..82

Appendix C HTML Code...85

Appendix D Circuit Diagrams ..86

Febrile Fits Monitor Contents
vii

List of Figures

Figure 1: Block Diagram for Child’s Unit ...3

Figure 2: Sketch of Child’s Unit Implementation..4

Figure 3: Block Diagram for Parent’s Unit..5

Figure 4: Main Components of BX-24 ..14

Figure 5: R-T Graph for an NTC Thermistor ..24

Figure 6: Thermistor 3K3A340I ..25

Figure 7: Thermistor Circuit ..26

Figure 8: TWS-434 Transmitter...28

Figure 9: TWS-434 Pin Diagram ...29

Figure 10: RWS-434 Receiver ...29

Figure 11: RWS-434 Pin Diagram...29

Figure 12: TX2 Transmitter ...33

Figure 13: RX2 Receiver ...33

Figure 14: TX2 Schematic ...35

Figure 15: RX2 Schematic...36

Figure 16: Designing the Form in Excel Visual Basic...45

Figure 17: “TempSens.xls” Program in Operation ..47

Figure 18: Real-time Temperature Graph..48

Figure 19: Graph Scales Automatically To Fit Data..48

Figure 20: Breadboard Setup for Parent’s Unit ...52

Febrile Fits Monitor Contents
viii

Figure 21: Breadboard Setup for Child’s Unit...52

Figure 22: Mock-up Board for Parent’s Unit (without LCD)....................................53

Figure 23: Mock-up Board for Child’s Unit ..53

Figure 24: Preparing the Parent’s Unit for Machining ..54

Figure 25: Preparing the Child’s Unit for Machining..55

Figure 26: PCB for Parent’s Unit...56

Figure 27: PCB for Parent’s Unit Button Board ..56

Figure 28: PCB for Child’s Unit ..57

Figure 29: Inside the Child’s Unit..59

Figure 30: Inside the Parent’s Unit ..59

Figure 31: Child’s Unit ..60

Figure 32: Parent’s Unit ...60

Figure 33: Initial Circuit Diagram for Child’s Unit ...86

Figure 34: Initial Circuit Diagram for Parent’s Unit..87

Figure 35: Final Circuit Diagram for Child’s Unit ..88

Figure 36: Final Circuit Diagram for Parent’s Unit ...89

Febrile Fits Monitor Contents
ix

List of Tables

Table 1: BX-24 Technical Specifications ..17

Table 2. DS1620 Command Set...19

Table 3: Resistance-Temperature Table ..25

Table 4: TWS-434 Parameters ...29

Table 5: RWS-434 Parameters...30

Table 6: TX2 Pin Descriptions...34

Table 7: RX2 Pin Descriptions ..36

Febrile Fits Monitor Contents
x

Febrile Fits Monitor Introduction
1

Chapter 1 Introduction

1.1 Febrile Fits in Children

Febrile fits are fits caused by fever. This usually occurs in children less than three

years old. The percentages of children who develop febrile fits vary for different race

and geographic location. In Singapore, around 40% of children suffer from febrile

fits.

When febrile convulsions begin, the child loses consciousness. Following that, the

body, legs and arms go into spasm. The head is thrown backwards and the legs and

arms begin to jerk. The skin goes pale and may even turn blue briefly. The attack

ends after a few minutes and the shaking stops. The child goes limp, and then normal

colour and consciousness slowly return.

If the febrile fits continue for an extended period of time, there could be a risk of

brain damage. The best treatment for febrile fits is to lower the child’s body

temperature. This is usually done by cold sponging.

However, as the saying goes, “Prevention is the best medicine”. When the body

temperature exceeds a certain value, sponging of the child can be initiated. Medicine

like panadol or valium may also be given.

Febrile Fits Monitor Introduction
2

1.2 Febrile Fits Monitor

To solve the problem of febrile fits, a small convenient device has been designed.

This involves two units. The Child’s Unit, which is attached to the child, and the

Parent’s Unit, which the parent can carry while he or she is in the house. Upon doing

a search over the internet, certain projects have been noted, which also involve

temperature monitoring. The setup involves a desktop computer which records and

analyzes the temperature reading. Graphs can also be plotted.

However, to ensure that this project is useful and practical, the desktop computer is

first removed from the setup. The whole system is implemented using small

microcontrollers. The microcontroller chosen for this project is the “BasicX”

microcontroller. The BasicX chip is very much like a mini computer, with its own

CPU, RAM, EEPROM, input and output ports. The code can be readily downloaded

into the BasicX chip, via a cable connected to the serial port of the PC.

With wires come the threats of strangulation, so care must be taken to minimize

loose wires as far as possible. The setup involves a wireless link between the Child’s

Unit and the Parent’s Unit. For these devices to be portable, small battery sources are

utilized.

The Parent’s Unit is user-friendly. It has a display indicating the temperature, as well

as a means to set the threshold fever temperature. When the child’s temperature rises

beyond the threshold, the alarm at the Parent’s Unit will sound. A message “Fever”

is also displayed. The parent can then immediately attend to the child.

Febrile Fits Monitor Child’s Unit
3

Chapter 2 Child’s Unit

Figure 1: Block Diagram for Child’s Unit

Temperature sensor

(NTC thermistor probe)

producing analogue

output. Temperature

range: 35 to 45 OC

The probe is placed at the child’s armpit.

Possible temperature sensors include the

thermocouple, the Negative Temperature

Coefficient (NTC) Thermistor, and the digital

temperature sensor Integrated Circuit (IC).

The NTC thermistor produces an analogue

output. The output variation is small, but it is

sufficient to be fed into the A/D pin of the

microprocessor. An operational amplifier

circuit is not needed to amplify the signal from

the sensor. A temperature sensor IC, which

gives a digital output, is more convenient.

However, the available ones do not have a

0.1°C accuracy.

MicroController Unit for

the Child (MCU-C)

This is placed at the front

of the baby (chest

region).

Voltage from

thermistor

network

ON / OFF

button

LCD display, showing

temperature reading

Radio Frequency

(RF) transmitter (TX)

Serial data

(digital) output

Febrile Fits Monitor Child’s Unit
4

Figure 2: Sketch of Child’s Unit Implementation

Febrile Fits Monitor Parent’s Unit
5

Chapter 3 Parent’s Unit (Portable device)

Figure 3: Block Diagram for Parent’s Unit

RF Receiver (RX) which

demodulates the signal

MicroController Unit for Parent (MCU-P)

Serial data (digital)

LCD Display

Showing

temperature

reading

Buzzer

Warning light

ON / OFF

button

Select Button

To choose Fever Setting, e.g.

from 36.5OC to 38.5OC, in steps

of 0.5OC.

Febrile Fits Monitor Choice of Microcontrollers
6

Chapter 4 Choice of Microcontrollers

4.1 PIC Microcontrollers

PIC microcontrollers are readily available in the market. They come in various sizes,

with different built-in functionalities. The cost of PIC microcontrollers is relatively

low, compared to other microcontrollers. For example, the PIC16F84 costs only

US$7. For one-time-programmable microcontrollers, the cost would be around US$2

less.

However, the hardware required to program and debug the PIC microcontrollers is

not cheap. A programmer board is used to download the program written into the

microcontroller. A low-end general purpose programmer board could easily cost

US$200. A high-end one could cost around US$700. This device is unable to do

debugging of the microcontroller. A prototype circuit board is required to do the

testing of the microcontroller.

To test the program, Microchip has provided MPLAB ICE (In-Circuit Emulator).

MPLAB ICE 2000 costs around US$1,500, while MPLAB ICE 4000 costs around

$2,500. Additional processor modules are required to allow the system to be

configured to emulate different processors. MPLAB ICD (In-Circuit Debugger) is a

real-time debugger and programmer for certain PICmicro MCUs.

Febrile Fits Monitor Choice of Microcontrollers
7

Microchip provides the program MPLAB, which can be used to download the

assembly language code into the PIC microcontroller. This is a free software.

Programming in a low level language like assembly language can be very efficient.

A set of tasks requiring 1 KByte of memory with assembly language can take up to

an equivalent 4 KBytes of memory using the C language. With assembly language,

we have more control over the program, and we are able to make more elegant codes.

Unfortunately, programming in this low level language can be extremely tedious.

For complicated programs, for example requiring 32 KBytes of memory, the

assembler code would be too messy. We may lose a large amount of time debugging

the program. A high level language is definitely the better choice for a programmer

who wants results fast.

C compilers offer a solution to this problem. The program can be written in C

language. The C compiler may integrate with MPLAB. After the C compiler

generates the assembler hex code, MPLAB could be used to transfer the hex code

into the PIC microcontroller. An example of a good C compiler is ByteCraft’s MPC

C Compiler for Microchip PIC. This costs more than US$2000.

On the other hand, there are other inexpensive programmer boards available in the

market. One example is the T342 MIG-3 programmer board from MIGadgets, which

comes with the T206 MIG C compiler. This costs only S$88. However, the trouble

with these low-end programmer boards is that the hardware does not follow the

requirements for the read, write and clocking signals strictly, resulting in a much

reduced lifespan for the microcontroller. Furthermore, there was hardly any technical

Febrile Fits Monitor Choice of Microcontrollers
8

support for the particular programmer board mentioned earlier. Another example of a

low cost programmer board is the K149 from DIY Electronics. More information

can be obtained from their website at www.kitsrus.com.

Another option could be to use the PICBasic compiler from MicroEngineering Labs

Inc. The PICBasic compiler costs US$100. An EPIC programming board worth

US$60 is required to download the program into the microcontroller. The PICBasic

complier runs in DOS mode, and uses the Basic language. A crystal, a few capacitors,

resistors and a 7805 Voltage Regulator would be required to complete the setup.

4.2 BasicX Microcontrollers

Typical microcontroller applications use C or assembly language. That is why they

are expensive to produce and maintain.

NetMedia has produced the BasicX microcontroller. NetMedia has handled the

difficult tasks, such as building a multitasking network operating system, language

processor, and compiler. The benefit of all this power is not available on most

microcontrollers at any price. The BasicX-24 microcontroller is currently being used

for this project. It costs just under S$100.

With this power we can write structured programs in a simple, straightforward

language. In fact BasicX's language was modelled after the language used in

Microsoft's Visual Basic development system, which is currently a very popular

programming language.

http://www.kitsrus.com

Febrile Fits Monitor Choice of Microcontrollers
9

Knowledge of Visual Basic is not required to use BasicX. The BasicX language is a

subset compatible with the Visual Basic language, and it is possible to write code

that will run in both PC and BasicX environments, as long as a common subset is

used.

We still need to accommodate differences between operating systems as well as

hardware, but it is possible to develop and debug the algorithms in Visual Basic and

make use of the same code in BasicX.

NetMedia also provides source code for Visual Basic applications that lets us

communicate with the PC from a BasicX application.

Using a Visual Basic development system on the PC side and BasicX as the

controller makes a powerful combination. NetMedia recommends Visual Basic 6.0

or higher for codeveloping PC applications and BasicX applications.

Febrile Fits Monitor BasicX
10

Chapter 5 BasicX

BasicX is a complete control system on a chip, combined with a software

development environment on a PC-compatible computer running Windows. A BX-

24 system combines a BasicX chip with additional devices to make it a standalone

computer:

BX-24 Hardware -- In the BX-24 system there is a fast core processor with a

ROM to store the BasicX Operating System, 400 bytes of RAM, 32 KBytes of

EEPROM, and several I/O devices such as timers, UARTs, ADCs, digital I/O

pins, SPI peripheral bus, and more. The BX-24 uses an Atmel AT90S8535 as its

core processor.

BasicX Operating System (BOS) -- The BasicX Operating System on-chip

provides the multitasking environment that makes the BasicX Chip very

powerful. The operating system also contains a high speed BasicX execution

engine.

BasicX Development Environment -- BasicX programs are developed on an

IBM-PC compatible computer under Windows 95/98/NT/2000. The BasicX

Development Environment includes an editor, compiler, various debugging aids,

and source code for examples.

Febrile Fits Monitor BasicX
11

The environment incorporates a true 32-bit Windows IDE. There is no reliance

on DOS programs hidden behind a Windows shell, which also means there are

no hidden 8-character filename limitations.

5.1 Making a BasicX Program

After the program is created, it is compiled. The compiler translates the BasicX

source code into an intermediate binary language that the BasicX chip understands,

and writes the data to a file (*.BXB). The compiler also takes startup preferences

such as pin I/O, RAM configuration information and other important startup

parameters and puts them in a preferences file (*.PRF)

 Source Code --> BasicX Binary file (*.BXB) plus

 BasicX Preferences (*.PRF)

An EXE file on a PC is equivalent to the combination of BXB and PRF files in

BasicX.

Once we have these two files, they are the complete representation of the program.

These files can be stored on disk, e-mailed, or given away without releasing any

source code. This way one could sell BasicX programs without anyone having

access to the source code.

The development environment downloads the program directly into the development

system or the circuit board.

Febrile Fits Monitor BasicX
12

5.2 Execution of the Program

On a BX-24 microprocessor, once we have a BasicX binary file and preferences file,

the code is downloaded into the 32 KB EEPROM. When the BasicX chip starts

(after reset), it begins executing instructions from the EEPROM. Since the EEPROM

is non-volatile, it is safe from power outages. If the power goes out, the code is still

retained in the EEPROM. However, any RAM data that the BasicX chip was

working on would inevitably be lost.

5.3 Troubleshooting Programs

When the program was compiled and downloaded into the microprocessor, the

processor was not able to function well. It worked sometimes, but usually gave

unexpected results. It was found that the size of certain strings exceeded the size

allowed by the compiler. The compiler options were then modified to allow 32

character strings.

Furthermore, strings should always be initialized before they are used. If not, the

problem comes when using the “Mid” function. A certain part of the string is

updated, but the rest of the string is nonsense.

The input buffer at the receiver side must be constantly cleared, while the fever

setting is modified. This is so that the microprocessor will not rush through all the

accumulated values in the queue.

Febrile Fits Monitor BasicX
13

It was initially intended to send a single byte wirelessly. However, this was not

enough due to the larger amount of information when changing from 0.5°C accuracy

to 0.1°C accuracy.

5.4 Software Switch Debouncing

Switch debouncing was implemented easily and effectively using software. There

was no need for complicated debouncing hardware. Simply, the program checks if a

certain push-button is in the down position. After a period of 5ms, the switch

bouncing should settle down. The program checks for the down state again. Next, the

program waits for the button to be released, before performing the required

operations.

5.5 Power Requirements of the BX-24

The BX-24 microprocessor requires a DC power supply in the range of 5.5 V to 15.0

V, which makes it ideal for battery power. Current requirements are 20 mA plus I/O

loads, if any.

Febrile Fits Monitor BasicX-24 Microprocessor
14

Chapter 6 BasicX-24 Microprocessor

Figure 4: Main Components of BX-24

6.1 BasicX Processor

The BasicX processor is the heart of the BX-24 computer, and is based on an Atmel

AT90S8535 chip. This custom-programmed 44 pin chip reads and executes the

program stored in the 32 KB EEPROM.

The BX-24 has 16 general purpose I/O lines that are TTL and CMOS compatible.

When used for digital I/O, each line can be set to 1 of 4 states -- output high, output

low, input tristate (hi-Z) and input with pullup. Up to 8 of the 16 lines can be used

alternatively as 10-bit analog to digital converters (ADCs) for sensing analog

voltages.

Febrile Fits Monitor BasicX-24 Microprocessor
15

6.2 SPI EEPROM Chip

When a program is written, the SPI (Serial Peripheral Interface) EEPROM chip is

where the program is stored. When the BasicX processor is executing, it fetches

instructions from this chip. The 32 KByte EEPROM (AT25656) can store

approximately 8000 lines of BasicX code, depending on the complexity of the

program.

6.3 Serial Port

A high speed 5 volt serial port is provided for connection to modems, PCs, terminals

or other controllers. The maximum communication speed is 460 800 baud. A hex

inverter (TC7WH04) inverts the serial signals coming to and from the processor's

serial port. The hex inverter is also used to isolate the processor's 5 V serial port

from the higher voltage levels (typically ±12 V) present on standard PC serial ports.

The serial port uses 3 wires -- RxData, TxData and DTR. The DTR line is used only

for downloading programs. The BasicX Development Environment on the PC has a

built-in window that allows 2-way communication with the BasicX serial port.

6.4 Low Voltage Monitor

To prevent the BX-24 from locking up or running erratically during power-on or any

other periods of transient or low voltage, the BX-24 employs a low voltage monitor.

The monitor is an internal part of the on-board regulator chip.

The monitor constantly checks the system's voltage level. If the BX-24's 5 V supply

voltage drops below 4.75 volts, the monitor immediately places the BX-24 in reset

until the voltage level rises again.

Febrile Fits Monitor BasicX-24 Microprocessor
16

6.5 Analogue to Digital Converter

The BX-24 includes an 8 channel, 10-bit analogue to digital converter (ADC). The

ADC channels are tied to pins 13 to 20, and is an integral part of the processor. All 8

channels can be used either as analogue or digital inputs.

The ADC inputs are 0 V to 5 V level and will not tolerate either higher or negative

voltages. For reliable ADC conversions it is recommended that the ground

connection of the source voltage (the voltage being measured) share a common

ground with the BX-24 ground connections at pin 4 or pin 23.

6.6 BX-24 Technical Specifications

I/O Lines 16 total; 8 digital plus 8 lines that can be ADC or

digital

EEPROM for program

and data storage

On-board 32 KB EEPROM

Largest executable user program size is 32 KBytes

RAM 400 bytes

Analogue to digital

converter

8 channels of 10 bit ADC, can also be used as

regular digital (TTL level) I/O

ADC sample rate 6 k samples/s maximum

On-chip LEDs Has a 2-color surface mount LED (red/green), fully

user programmable, not counted as I/O line

Program execution speed 60 microseconds per 16 bit integer add/subtract

Serial I/O speed 2400 baud to 460.8 Kbaud on Com1

300 baud to 19 200 baud on any I/O pin (Com3)

Febrile Fits Monitor BasicX-24 Microprocessor
17

Operating voltage range

Min/Max

4.8 VDC to 15.0 VDC

Current requirements 20 mA plus I/O loads, if any

I/O output source current 10 mA @ 5 V (I/O pin driven high)

I/O output sink current 20 mA @ 5 V (I/O pin pulled low)

Combined maximum

current load allowed

across all I/Os

80 mA sink or source

I/O internal pull-up

resistors

120 kΩ maximum

Floating point math Yes

On-chip multitasking Yes

On-chip clock/calendar Yes

Built-in SPI interface Yes

PC programming interface Parallel or serial downloads

Package type 24 pin PDIP carrier board

Environmental

specifications

Absolute maximum

ratings

Operating temperature: 0 °C to +70 °C

Storage temperature: -65 °C to +150 °C

Table 1: BX-24 Technical Specifications

Febrile Fits Monitor Digital Thermometer
18

Chapter 7 Digital Thermometer

7.1 DS1620

The DS1620 Digital Thermometer is provided by Dallas Semiconductor. This is an

integrated circuit that performs the task of temperature measurement. The DS1620

was initially chosen for this project. It is available from Farnell at $13.29.

7.2 Pin Assignment

7.3 3–Wire Communications

The 3–wire bus is comprised of three signals. These are the RST (reset) signal, the

CLK (clock) signal, and the DQ (data) signal. All data transfers are initiated by

driving the RST input high. Driving the RST input low terminates communication. A

clock cycle is a sequence of a falling edge followed by a rising edge. For data inputs,

the data must be valid during the rising edge of a clock cycle. Data bits are output on

the falling edge of the clock and remain valid through the rising edge.

Febrile Fits Monitor Digital Thermometer
19

When reading data from the DS1620, the DQ pin goes to a high-impedance state

while the clock is high. Taking RST low will terminate any communication and cause

the DQ pin to go to a high-impedance state.

Data over the 3–wire interface is communicated LSB first. The command set for the

3–wire interface is shown in Table 2.

Table 2. DS1620 Command Set

Febrile Fits Monitor Thermistor
20

Chapter 8 Thermistor

8.1 Advantages of a Thermistor

The DS1620 IC described in the previous section is rather large. It would not be

convenient to place it on the child. The large size may cause discomfort to the child.

A better alternative would be to use a thermistor. The thermistor probe consists of a

small thermistor at the tip, with two wires attached. The thermistor at the tip is only

2mm in diameter. The small size makes it very suitable for temperature monitoring

of a human subject.

Furthermore, the DS1620, in normal operation, only gives temperature readings up

to a resolution of 0.5 deg C. This is hardly enough for clinical measurement of

human body temperature. In addition, it is not a straight-forward process to obtain

higher resolutions from the DS1620 IC. Digital temperature sensors with 0.1 deg C

accuracy are not readily available in Singapore. This was also another factor in the

decision to change from a digital temperature sensor to an analogue temperature

sensor.

8.2 Properties of Thermistors

NTC devices are devices whose resistance decreases as their temperature increases.

PTC devices are devices whose resistance increases as their temperature increases.

Febrile Fits Monitor Thermistor
21

Alpha(α) (Temperature Coefficient), a material characteristic, is defined as the

percentage resistance change per degree Centigrade. Alpha is also referred to as the

temperature coefficient. For Negative Temperature Coefficient (NTC) Thermistors,

typical values of alpha are in the range -3%/°C to -6%/°C.

Beta (β), is the material constant of a NTC thermistor. It is also known as the

Sensitivity Index. It provides an indication of the temperature sensitivity of a

thermistor over a temperature range in a manner that accounts for the exponential

nature of the relationship between the Resistance and Temperature of a thermistor. It

is defined as:

where

- R1 is the resistance (ohms) of the thermistor at temperature T1 (Kelvin)

- R2 is the resistance (ohms) of the thermistor at temperature T2 (Kelvin),

- ln is log function to base ‘e’ (inverse of exponential function)

- β has units of Kelvin.

8.3 Steinhart-Hart Thermistor Equation:

The Steinhart-Hart thermistor equation is named after two oceanographers associated

with Woods Hole Oceanographic Institute on Cape Cod, Massachusetts. The first

publication of the equation was by I.S. Steinhart & S.R. Hart in "Deep Sea Research"

vol. 15 p. 497 (1968).

The equation is derived from mathematical curve-fitting techniques and examination

Febrile Fits Monitor Thermistor
22

of the Resistance versus Temperature characteristic of thermistor devices. In

particular, using the plot of the natural log of resistance value, ln(R) versus (1/T) for

a thermistor component to consider (1/T) to be a polynomial in ln(R), an equation of

the following form is developed:

(where T is the temperature in Kelvin, and A0AN are polynomial coefficients that

are mathematical constants.)

The order of the polynomial to be used to model the relationship between R and T

depends on the accuracy of the model that is required and on the non-linearity of the

relationship for a particular thermistor. It is generally accepted that use of a third

order polynomial gives a very good correlation with measured data, and that the

"squared" term is not significant.

The equation then is reduced to a simpler form, and it is generally written as:

where: A, B, and C are constant factors for the thermistor that is being modelled.

This is the Steinhart-Hart equation, with Temperature as the main variable. The

equation is presented explicitly in resistance. Before summarizing the situation, some

general points of relevance in understanding the practical issues associated with it

are discussed:

The equation is relevant for the complete useful temperature range of a thermistor.

The coefficients A, B, and C are constants for the individual thermistors. Unlike

Febrile Fits Monitor Thermistor
23

Alpha and Beta they should not be regarded as material constants. The A, B, and C

constants are established for individual thermistors in a particular temperature range

as follows:

The equation is considered for three temperature points in the range – usually at the

low end, the middle and the high end of the range. This ensures best fit along the full

range. (The smaller the temperature range, the better the calculations will match

measured data.) The temperature values are usually taken to be 0°C, 25 °C and 70 °C

therefore these values are used to illustrate the principle.

Precisely controlled measurements of temperature and associated resistance value of

the thermistor are made in a temperature controlled medium at these three calibration

points. These accurately measured values of Resistance and Temperature are inserted

into the equation to form three simultaneous equations as follows: (note: 0°C =

273.15K)

Since the resistance values are measured numerical quantities, the equations are a

system of three simultaneous equations in three unknowns namely A, B and C. The

values for A, B and C can be found by standard mathematical techniques for solving

simultaneous equations, or by use of analytical software tools.

Febrile Fits Monitor Thermistor
24

This is a brief summary of the origins and techniques used to derive the A, B and C

coefficients for thermistor components. These values are sometimes referred to as

the “Steinhart Coefficients” for a thermistor. Thermistor manufacturers publish data

for these coefficients for their thermistor products.

The Steinhart-Hart equation produces a good approximation to the relationship

between T and R for the complete range of a thermistor based on data from just three

calibration points. The following figure shows the R-T Graph for BetaTHERM part

0.1K1A Thermistors. The full Temperature range is from -80 °C to +100 °C. The

difference between values calculated from the Steinhart-Hart equation and the actual

measurements should typically be less than +/- 0.01 °C.

Figure 5: R-T Graph for an NTC Thermistor

8.4 Thermistor Used

The thermistor 3K3A340I from BetaTherm was used. It cost $11.33, and was

obtained from Farnell.

Febrile Fits Monitor Thermistor
25

Figure 6: Thermistor 3K3A340I

Electrical Specifications:

Table 3: Resistance-Temperature Table

Febrile Fits Monitor Thermistor
26

8.5 Calculations

Two approximate resistance values are as shown:

 35°C: 2kΩ 45°C: 1.3kΩ

The thermistor is placed in series with an accurate 1.5k ohm resistor, to get a voltage

divider circuit.

High voltage = 2/(2+1.5)*5 = 2.86V

Low voltage = 1.3/(1.3+1.5)*5 = 2.32V

Difference = 0.54V

The BasicX chip at the receiver side does A/D conversion to obtain the voltage

reading. This is done without amplification. The voltage across the thermistor is

calculated. The resistance of the thermistor is then obtained.

Figure 7: Thermistor Circuit

5
RR

RV
1T

T
T ×

+
=

T

1T
T V5

RVR
−

=

Febrile Fits Monitor Thermistor
27

Following that, the temperature value is calculated using the Steinhart-Hart

Thermistor Equation.

A = 1.405027x10-3

B = 2.369386x10-4

C = 1.012660x10-7

These constants are based on the three temperature reference points, 0°C, 25°C and

70°C.

Febrile Fits Monitor AM Transmitter and Receiver
28

Chapter 9 AM Transmitter and Receiver

The transmitter TWS-434 and receiver RWS-434 from Reynolds Electronics are

extremely small, and are excellent for applications requiring short-range RF remote

control or monitoring. The transmitter module is only 1/3 the size of a standard

postage stamp, and can easily be placed inside a small plastic enclosure. These were

initially used in the design.

9.1 TWS-434

The transmitter TWS-434 uses Amplitude Modulation (AM). The transmitter output

is up to 8mW at 433.92MHz with a range of approximately 120 metres (open area)

outdoors. Indoors, the range is approximately 60 metres, and will go through most

walls.

Figure 8: TWS-434 Transmitter

The TWS-434 transmitter accepts both linear and digital inputs, can operate from 2

to 12 Volts-DC, and makes building a miniature hand-held RF transmitter very

convenient. The TWS-434 is approximately 1/3 the size of a standard postage stamp.

Febrile Fits Monitor AM Transmitter and Receiver
29

Figure 9: TWS-434 Pin Diagram

Table 4: TWS-434 Parameters

9.2 RWS-434

The receiver also operates at 433.92MHz using Amplitude Modulation, and has a

sensitivity of 3uV. The RWS-434 receiver operates from 4.5 to 5.5 volts-DC, and

has both linear and digital outputs.

Figure 10: RWS-434 Receiver

Figure 11: RWS-434 Pin Diagram

Febrile Fits Monitor AM Transmitter and Receiver
30

For maximum range, the recommended antenna should be approximately 35cm long.

On the internet, it was found that certain modules were tested using a 35cm, solid, 24

gauge (0.51mm diameter) hobby type wire, and reached a range of over 120 metres.

Actual results for this project may vary depending on the current surroundings.

Table 5: RWS-434 Parameters

9.3 Disadvantages

The range of these AM modules was tested. The maximum range was found to be

around 15 metres, from one room to another room. This is definitely not sufficient

for standard home applications. The reason for the short range is that AM modules

are much more susceptible to noise, than FM modules. Because of this, the AM radio

frequency modules were replaced with FM radio frequency modules.

Febrile Fits Monitor FM Transmitter and Receiver
31

Chapter 10 FM Transmitter and Receiver

10.1 Choice of Transmitter and Receiver

The Infocomm Development Authority of Singapore (iDA) approves radio

equipment and devices in the frequency bands of 433.79-434.79MHz, 866.10-

869.00MHz, 924-925MHz, 2,400.00-2,483.50MHz and 24,000-24,250MHz.

For the first 3 bands, the maximum permissible output power emission is 10mW,

while in the last 2 bands, the permissible emission is 100mW.

In choosing the radio frequency (RF) modules, care was taken to make sure that the

frequency fell in the allowed frequency band, and the transmitter power did not

exceed the permissible emission. A long transmission range is indeed advantageous.

However, as the hardware will only be used within the house, the range need not be

very far. Nevertheless, a large transmission range will buffer the effect of

electromagnetic interference or obstacles in the transmission path.

The voltages of the RF modules are also very important. Since the existing hardware

components all require 5V for operation, it is much simpler to get RF modules that

operate at also 5V.

Febrile Fits Monitor FM Transmitter and Receiver
32

2nd Generation Radiometrix FM transmitter and receiver were used. These operate at

433MHz and 5V. The transmitter and receiver were purchased from Farnell, and cost

$48.81 and $100.83 respectively.

10.2 Description

The TX2 and RX2 data link modules are a miniature PCB mounting UHF radio

transmitter and receiver pair which enable the simple implementation of a data link

at up to 40 Kbit/s at distances up to 75 metres in-building and 300 metres open

ground.

The actual range was tested in a building, and was found to be around 50 metres.

This should be quite good for a home application.

Available for operation at 433.92 MHz in Europe and Singapore, and 418.00 MHz in

the U.K., both modules combine full screening with extensive internal filtering to

ensure EMC compliance by minimising spurious radiations and susceptibilities. The

TX2 and RX2 modules will suit one-to-one and multi-node wireless links in

applications including car and building security, EPOS and inventory tracking,

remote industrial process monitoring and computer networking.

Because of their small size and low power requirements, both modules are ideal for

use in portable, battery-powered applications such as hand-held terminals.

Febrile Fits Monitor FM Transmitter and Receiver
33

Figure 12: TX2 Transmitter

Figure 13: RX2 Receiver

10.3 Functional Properties

The TX2 transmitter module is a two stage, SAW controlled FM transmitter

operating between 2V and 6V and is available in 433.92MHz and 418.00 MHz

versions. The 433.92 MHz unit is type-approved to ETS 300-220 for European use

and delivers nominally +9dBm from a 5V supply at 12mA, while the 418.00 MHz

unit has MPT 1340 type-approval for U.K. use and delivers -3dBm from a 5V supply

at 5mA. Both modules measure 12 x 32 x 3.8 mm.

Febrile Fits Monitor FM Transmitter and Receiver
34

The RX2 module is a double conversion FM superheterodyne receiver capable of

handling date rates of up to 40kbit/s. The SIL style RX2 receiver measures 17.5 x 48

x 4.5 mm. It will operate from a supply of 3-6V and draws 14mA when receiving. A

fast-acting carrier detect and a power-up enable time of less than 1ms allows

effective duty cycle power saving and a -107 dBm sensitivity. This, combined with a

SAW front-end filter results in an excellent RF performance and EMC conformance.

RF GND (pin 1) RF ground pin, internally connected to the module screen and

pin 4 (0V). This pin should be connected to the RF return path

(e.g. coax braid, main PCB ground plane etc.)

RF out (pin 2) 50Ω RF output to the antenna, it is DC isolated internally.

Vcc (pin 3) +ve supply pin. The module will generate RF when the Vcc

supply is present. Max ripple content 0.1VP-P. A 100nF de-

coupling ceramic capacitor is may be used.

0V (pin 4) Supply ground connection, connected to pin 1 and screen.

TXD (pin 5) This DC coupled modulation input will accept either serial

digital data (0V to Vcc levels) or high level linear signals. Input

impedance is 100kΩ.

Table 6: TX2 Pin Descriptions

Febrile Fits Monitor FM Transmitter and Receiver
35

Figure 14: TX2 Schematic

RF in (pin 1) 50Ω RF input from the antenna, it is DC isolated internally.

RF GND

(pin 2)

RF ground pin, internally connected to the module screen and pin 4

(0V). This pin should be connected to the RF return path.

CD (pin 3) The Carrier Detect may be used to drive an external PNP transistor

to obtain a logic level carrier detect signal. If not required it should

be connected to pin 5 (Vcc).

0volt (pin 4) Supply ground connection, connected to pin 1 and screen.

Vcc (pin 5) +ve supply pin. +3.0V to +6.0V @ <17mA . The supply must be

clean < 2mVP-P ripple. A 10μF de-coupling capacitor and 10Ω series

resistor is recommended if a clean supply is not available.

AF (pin 6) This is a buffered and filtered analogue output from the FM

demodulator. It has a standing DC bias of 1.2V and 400mVP-P base

band signal. It is useful as a test point or to drive linear decoders.

Load impedance should be > 2kΩ and < 100pF.

Febrile Fits Monitor FM Transmitter and Receiver
36

RXD (pin 7) This digital output from the internal data slicer is a squared version

of the signal on pin 6 (AF). It may be used to drive external

decoders. The data is true data, i.e. as fed to the transmitter. Load

impedance should be > 1kΩ and < 1nF

Table 7: RX2 Pin Descriptions

Figure 15: RX2 Schematic

10.4 Troubleshooting Automatic Gain Control

In Automatic Gain Control (AGC), the FM receiver IC will detect the envelope of

any signal that it receives. When the FM transmitter IC does not send a signal, the

receiver will amplify the received signal. That was the reason why the receiver was

outputting nonsense most of the time.

Only when there is a short burst of serial signal transmission, the receiver outputs the

correct signal. However, nonsense data was constantly being sent from the receiver

Febrile Fits Monitor FM Transmitter and Receiver
37

to the microcontroller. This caused the microcontroller to be unable to time correctly,

according to the serial interface.

One solution is to use the Carrier Detect signal of the receiver. Unfortunately, the

transmitter IC is always on, so there is always a carrier.

The easiest and most effective solution is to send a header, before the actual data.

For digital data, it would consist of a sequence of bits. In this case, the

microcontroller handles the serial interface, at a higher level. The header would then

consist of a sequence of bytes.

However, this still does not solve the problem of the serial timing. It was found that

by sending two headers, with a short pause of around 3 bytes duration (300 baud) in

between them, the microcontroller would then be able to time correctly, and decode

the serial data. When no data is received, the receiver gain is high. Once the first

header is detected by the receiver, the receiver will reduce its gain to an appropriate

level. The first header cannot be decoded by the microcontroller. The short pause

allows the microcontroller on the receiver side to adjust its timing for the serial data.

The receiver does not amplify the signal yet, as it takes some time before the

Automatic Gain Control starts to take effect. By the time the second header comes in,

the microcontroller is able to decode it. The microcontroller will then receive the

actual data, for further processing.

Because of the Automatic Gain Control, an analogue signal cannot be transmitted.

For this reason, a microcontroller is also needed at the transmitter (Child’s Unit).

Febrile Fits Monitor Web Management Proposal
38

Chapter 11 Web Management Proposal

11.1 Introduction

The Parent’s Unit is able to receive the temperature data from the Child’s Unit

remotely, from a distance of about 50 metres in-building. This works fine if the

parent is also at home with the child. The parent can carry along the Parent’s Unit

with him, as long as he stays within the house.

However, the problem arises if the parents need to go out to work. They would not

be able to take the Parent’s unit out of the house. There should be some way for them

to know the state of their child at home. The solution is to introduce internet

functionality to the device. The Parent’s Unit can be connected to a laptop or desktop

PC, which has an internet connection. Once the connection to a particular FTP server

is established, a program in the PC will then start uploading the temperature data to

the FTP server. The parents would be able to view the temperature data and graph

over the internet, even when they are at their workplace.

This chapter describes how the project could be developed to a professional and

commercially viable state. This proposal caters for the case of multiple users.

On the local PC, the Visual Basic 6 program, TempSens.exe will capture data from

the serial port, which is connected to the temperature measuring device. The data

Febrile Fits Monitor Web Management Proposal
39

will then be stored in an Access database file (Access 97), TempLocal.mdb. The

incoming data can be uploaded to a server, for viewing on a remote PC.

11.2 Operation at Local PC

The user need not login to the server. The Visual Basic 6 program, TempSens.exe,

will capture data from the serial port, which is connected to the temperature

measuring device. The temperature data will come in every minute.

The program will plot a graph on the local PC. It will save the readings into the

Access database file, TempLocal.mdb.

TempLocal.mdb

Date (from local PC) Time (from local PC) Temperature (from serial port)

2003-12-21 10:00 37

2003-12-21 10:01 37.2

2003-12-21 10:02 37.4

2003-12-21 10:03 37.2

2003-12-21 10:04 37

By default, the program will store up to 7 days of temperature data. The user can

choose to delete all the past records, or to set the number of days to store the records.

11.3 User Registration from Local PC

The user has to switch on the device, which will then output the Product Serial

Number and the Product Code, to the Visual Basic program. The Product Code is

Febrile Fits Monitor Web Management Proposal
40

different from the Product Serial Number. The Product Code is not known to the

user.

The user registration is done via internet connection, using the same program,

TempSens.exe. First, internet connection must be established. The user selects

“Register” from the menu. He is shown a dialog box with the following fields:

User Information: Fields that are to be completed: (* Required)

* First Name

* Last Name

* Company

* Product Serial No. (Product Serial No. is stated on the product)

* Email

Country

State

Telephone No.

Shop where product was purchased

The program, TempSens.exe, will first check to see if the Product Serial No. that is

entered by the user matches with that given by the device. If they match,

TempSens.exe will continue to send data over the internet.

The User Information is sent from the Visual Basic program to the internet server,

e.g. http://www.TempSens_website.com. The server will check the Product Serial

Number and the Product Code. The server has a database of valid Product Serial

Number and Product Code pairs, Serial_Code.mdb. This database, and all other

http://www.TempSens_website.com

Febrile Fits Monitor Web Management Proposal
41

databases, should be protected, so that people cannot access them. Only the web

administrator can access them.

Serial_Code.mdb

Product Serial No. Product Code

TS123001 378FD9VJ

TS123002 JNVKD94H

TS123003 83BV75NT

TS123004 WUR7VND9

TS123005 ZNC4J4O8

If the Visual Basic program has provided the correct information, the server makes a

sub-directory, using the Product Serial No. This will then store the temperature

measurement data later on.

The user is shown the next dialog box. The user enters the following info:

User Name and Password.

The server checks if the User Name is unique. If so, it is accepted, and the User

Name and Password are stored into a database, Password.mdb.

Password.mdb

User Name Password Product Serial No.

chancc depdep123 TS123001

alextan cavcav123 TS123002

greenp teatea123 TS123003

Febrile Fits Monitor Web Management Proposal
42

gopalbn frodosam TS123004

maggie simpson TS123005

11.4 User Login from Local PC

The device can be connected, and running in the beginning. The user runs the

program, TempSens.exe, and chooses “Login to website”. The user enters his “User

Name” and “Password”. The server will check if they are valid.

If the information is correct, the server allows TempSens.exe in the user’s local PC

to upload the temperature measurement data. These data will be stored in a database,

TempRemote.mdb, on the server, in the user’s folder (named using the Product

Serial No.)

TempRemote.mdb – inside folder “TS123003”

Date of Upload

(from server)

Date

(from local PC)

Time

(from local PC)

Temperature

2003-12-21 2003-12-21 10:00 37

2003-12-21 2003-12-21 10:01 37.2

2003-12-21 2003-12-21 10:02 37.4

2003-12-21 2003-12-21 10:03 37.2

2003-12-21 2003-12-21 10:04 37

When TempSens.exe starts it uploading session, it will upload a temperature record,

every minute. This event is triggered when the program TempSens.exe receives a

data (string) from the serial port.

Febrile Fits Monitor Web Management Proposal
43

The internet connection may be lost for some time. TempSens.exe would not be able

to upload the data. When the connection is established again, TempSens.exe will

update the server database with the past temperature readings.

11.5 User Login at remote PC

The user can access his temperature measurement data from a remote PC, using a

web browser. In fact, he can also access it from the local PC itself, for testing

purposes.

At the website, http://www.TempSens_website.com, the user will login with his

“User Name” and “Password”. When accepted, the server will extract the

temperature data from the user’s database, TempRemote.mdb, on the server, in the

user’s folder (named using the Product Serial No.)

The server will use these readings to plot a graph, for the user to see on his remote

PC. The graph for the current day is shown. The vertical axis is temperature, and the

horizontal axis is time. There will be an option for the user to zoom in on selected

regions of the graph. The user can also see the raw temperature readings as text.

11.6 Server Temperature Databases

The server will only store up to the past 7 days of temperature data. The 7 days are

calculated according to the variable “Date of Upload”, in case the User changes his

date setting on his local PC. After 7 days, the temperature data is erased. This is to

conserve space on the server.

http://www.TempSens_website.com

Febrile Fits Monitor Web Management Proposal
44

11.7 Difficulty Faced

It was intended to outsource this portion of the project. Programmers and web

designers were approached to handle the web management. The cost of setting up

this website would amount to $6,000. This is quite a large sum of money. This is

certainly not appropriate for a project prototype. As a result, I decided to do a simple

real-time remote temperature monitoring system, over the internet. This will be

explained in the following chapter.

Febrile Fits Monitor Monitoring over the Internet
45

Chapter 12 Monitoring over the Internet

12.1 Excel Visual Basic

As it was not economically feasible to accomplish the web management proposal

mentioned in the previous chapter, a simpler version was developed. It is described

in this chapter. The source codes are placed in Appendix B.

An Excel 2002 file, “TempSens.xls”, was created for the purpose of updating the

FTP server. Excel Visual Basic (VB) was used as the programming language. The

following diagram shows the Visual Basic editing environment.

Figure 16: Designing the Form in Excel Visual Basic

Febrile Fits Monitor Monitoring over the Internet
46

The short-cut key “Ctrl+T” was assigned to run the “Telemetry” Visual Basic Macro.

After opening the files “TempLog.xls” and “TempSens.xls”, and saving the chart to

the FTP server, the connection to the FTP server is established. The connection will

remain, as long as the Excel program is kept open. “Ctrl+T” can be pressed to

activate the “Telemetry” Macro. On the form that appears, the user can choose

“Open Serial Port” and “Start Updating”. This will allow the FTP server to be

updated in regular intervals. The update interval can be set by the user, by typing in

the appropriate cell (“Update Interval”). The user can choose “Clear Records” to

erase the past temperature logs.

The Parent’s Unit is to be connected to the PC via the serial port. When the Parent’s

Unit receives a temperature value from the Child’s Unit, it will send this data to the

PC. The running “TempSens.xls” would capture the data. The temperature logs will

be copied to the file “TempLog.xls”. “TempLog.xls” would be uploaded to the FTP

server. The chart in “TempSens.xls” would also be published to the server.

Following that, the file “TempSens.xls” would be saved to the local hard drive.

This process is repeated after the duration of the “Update Interval”. The “Update

Interval” is the period of free time between successive updates. The repetition period

may be longer, due to a slow internet connection, or a slow processor speed.

The following figure shows the “TempSens.xls” Visual Basic program in operation.

As can be seen from the figure, the program will also keep a record of the instances

when the Child’s Unit is not detected, or when the Parent’s Unit is not detected. A

file “Report.txt”, is also created, which records any errors encountered.

Febrile Fits Monitor Monitoring over the Internet
47

Figure 17: “TempSens.xls” Program in Operation

12.2 Viewing from a Web Browser

Once the program in “TempSens.xls” is running in the home PC, the parents will be

able to see their child’s temperature data and graph over the internet, anytime, and

anywhere. The website address currently used for this project is

http://www.innovation-invention.com/Telemetry/.

Once at the website, the user can click on the link, “View the Real-time Temperature

Graph”. The temperature graph will be shown, and will refresh itself automatically,

every 15 seconds. It is best viewed with a 1024 by 768 screen resolution. The graph

is automatically scaled to fit all the temperature data. The user can also download the

file “TempLog.xls”, which contains the temperature data.

http://www.innovation-invention.com/Telemetry/

Febrile Fits Monitor Monitoring over the Internet
48

Figure 18: Real-time Temperature Graph

Figure 19: Graph Scales Automatically To Fit Data

Febrile Fits Monitor Monitoring over the Internet
49

The source code for the web page showing the real-time graph is included in

Appendix C. It can be seen that the code can be very short and simple. The absolute

internet address must be stated, instead of just the relative link. This is to prevent

Internet Explorer from showing its cached version of the webpage, which will

remain static.

12.3 Troubleshooting TimerModule

The Excel VB command “Application.OnTime” allows the user to schedule a task at

a future date. This command is used repeatedly, to schedule the next updating

process, once the current process has finished executing.

The repetition time had to be equal or longer than the “Update Interval”. However, it

was found that the updating process, after a while, would repeat itself immediately

after the current process.

The problem was traced to the control buttons “Stop Updating” and “Start Updating”.

On pressing “Stop Updating”, the updating process is stopped by setting a certain

flag variable, to halt the next updating process that is scheduled to come. It can only

halt the updating at the future scheduled time, not at the current time. By clicking on

the “Start Updating” button, a new timer process is initiated, and the flag variable is

set to allow future scheduled events. Thus two timer processes operate at the same

time, giving continuous updating. To solve this problem, the program keeps track of

the number of timer processes. If there are more than 1 timer processes, the program

will stop the redundant timer process.

Febrile Fits Monitor Monitoring over the Internet
50

Another problem was encountered. After around half an hour to a few hours, the

program could no longer upload to the server. Subsequently, the program reported

errors at every scheduled updating process. The “Publish” property was changed to

“True”, so that Excel would upload a new file each time, instead of just uploading

the additional data. The problem could have been due to a corruption in the data,

while it was sent to the server. The uploading commands were modified to include

the absolute pathname and filename, instead of just specifying a “Save” at the same

previous location. In the event the program fails to upload, the internet connection

can be closed and reopened. The program will then continue upload.

Screen savers were always suspected as the cause of certain problems. On the

contrary, the problems were found to have different reasons behind them. Thus,

screen savers, so far, are not known to affect the program’s operation.

12.4 Troubleshooting FMain

Every now and then, the program encountered an error. When the data is received

from the serial port, it will be written to one particular cell in the worksheet. This

worked most of the time, but after a few minutes, the program hanged. The cause of

the problem was that at the time the serial data was received, Excel was busy saving

the file. When Excel is saving the file, data cannot be written to the cells. As a

solution, Boolean flag variables were used to indicate that Excel is busy saving, or

busy modifying. This ensured that the two processes did not occur simultaneously.

Febrile Fits Monitor Assembly
51

Chapter 13 Assembly

13.1 Mock-up Boards

Due to time constraints, different aspects of the project, like hardware and software,

had to be done simultaneously. Boxes were required to house the Parent’s Unit and

the Child’s Unit. The PCB design was just beginning. Boxes of the correct

dimensions and shape needed to be selected. Furthermore, machining of the boxes

had to be done to incorporate the final circuitry.

Looking at the breadboards consisting of the hardware setups, mock-up boards were

created. Mock-up boards are basically full-scale models of the final hardware. A

great deal of estimation had to be done, as to the positioning of the different

components. Styrofoam boards and basic hardware components were used in the

construction of the mock-up boards.

Febrile Fits Monitor Assembly
52

Figure 20: Breadboard Setup for Parent’s Unit

Figure 21: Breadboard Setup for Child’s Unit

Febrile Fits Monitor Assembly
53

Figure 22: Mock-up Board for Parent’s Unit (without LCD)

Figure 23: Mock-up Board for Child’s Unit

Febrile Fits Monitor Assembly
54

13.2 Selecting the Boxes

Places like Sim Lim Tower and Mustafa Centre (Serangoon Road) were visited.

With the mock-up boards in hand, different products on the shelves were inspected,

to see which could be suitable to house the hardware setups. The size of the boxes is

of extreme importance. The box should not be too large. On the other hand, too small

a box will result in the PCB being unable to fit inside. If the box is too small, one

option would be to design a double-sided PCB. This is not so easy, and the NUS

PCB Fabrication Lab does not recommend double-sided PCB’s.

13.3 Machining the Boxes

According to the models of the mock-up boards, the boxes were marked for

machining.

Figure 24: Preparing the Parent’s Unit for Machining

Febrile Fits Monitor Assembly
55

Figure 25: Preparing the Child’s Unit for Machining

13.4 PCB Design

According to the mock-up boards, and the box dimensions, Printed Circuit Boards

(PCB) were designed for the various components in the Parent’s Unit and the Child’s

Unit. The software used was “Protel Design System Advanced PCB version 2.7.1”.

It was indeed an advantage having had practice on this software in an earlier module,

EE2001.

Febrile Fits Monitor Assembly
56

Figure 26: PCB for Parent’s Unit

Figure 27: PCB for Parent’s Unit Button Board

Febrile Fits Monitor Assembly
57

Figure 28: PCB for Child’s Unit

13.5 Troubleshooting

The PCB’s were fabricated by Jalil in the PCB Fabrication Lab in NUS. After

obtaining the PCB’s, the devices were soldered on. The PCB’s were tested and they

were found to be working. Jalil was quite impressed that they worked the first round.

However, it was found that the Child’s Unit PCB was not able to operate beyond

around 5 minutes. The voltage regulator became extremely hot. The power had to be

cut off. There was even a faint burning smell. The voltage regulator was removed

from the PCB. There had been initial trouble soldering on this device. Due to

extended period of active soldering, the thermal stress on the voltage regulator may

Febrile Fits Monitor Assembly
58

have been too great. Upon removing the voltage regulator, one of the legs were

broken from the chip’s body. Still, it could not be confirmed that the fault lay in the

voltage regulator.

Every device on the PCB was tested thoroughly, using a multimeter. Since they have

all been soldered onto the PCB, and electrically connected, estimation had to be done,

to account for the effect of the circuit.

It was found that one of the capacitors did not show the correct capacitance. On

closer observation, the polarity of the capacitor (22uF) was actually reversed. It had

been assumed that capacitors of this particular shape and design did not have a

polarity. All these while, during the testing on the breadboards, this capacitor had

somehow been placed correctly. The capacitor was promptly replaced.

13.6 Final Assembly

The following diagrams show the final assemblies of the Child’s Unit and the

Parent’s Unit. Both the internal and external views are shown.

Febrile Fits Monitor Assembly
59

Figure 29: Inside the Child’s Unit

Figure 30: Inside the Parent’s Unit

Febrile Fits Monitor Assembly
60

Figure 31: Child’s Unit

Figure 32: Parent’s Unit

Febrile Fits Monitor Conclusions
61

Chapter 14 Conclusions

To solve the problem of febrile fits in children, the “Febrile Fits Monitor” was

developed in this project. Although there were technical difficulties encountered

during the progress of the project, they were overcome eventually, through detailed

troubleshooting and careful planning. This project involved a great deal of

integration between hardware and software. These types of projects are not very

common in the usual curriculum. This being the case, I took it as a challenge to

develop something different, and novel.

When this project was conceived, and got under way, there were no other devices

like this found in the market. In the duration of the project, however, a certain similar

device was made available commercially. It was “Bebe Sounds”. This also consisted

of two units. One unit would be on the child, and would also send the temperature

data to the other unit. However, the temperature sensor was flat on the child’s unit,

and had to be positioned at the tummy. The temperature readings would tend to be

less than actual body temperature.

 I had to improve my system, so as not to be simply performing the same function.

Firstly, I have an external thermistor probe that can be positioned at the armpit.

Secondly, the system was improved to allow the user to view the temperature chart

over the internet.

Febrile Fits Monitor Conclusions
62

This project does not need to stop here. The system could be improved to have added

functionality. For example, the system could also measure other biomedical signals,

like heart rate, blood pressure and oxygen saturation. The framework of hardware,

communications and software can easily be adapted to suit the additional features.

It must be said that tremendous experience was gained during the development of the

“Febrile Fits Monitor”. With careful time management and diligence, the project was

brought from its infancy of conceptualization, to a complete and practical working

model.

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
63

Appendix A Source Codes for Microcontrollers

A.1 Code for Transmitter
' TxMain.bas

'Remember to set the compiler option to get 32 character string.

Option Explicit

'Note : Queue buffer overhead = 9 bytes
Private Const InputBufferSize As Integer = 30
Private InputBuffer(1 To InputBufferSize) As Byte

Private Const OutputBufferSize As Integer = 30
Private OutputBuffer(1 To OutputBufferSize) As Byte

'Private Const PCInputBufferSize As Integer = 30
'Private PCInputBuffer(1 To PCInputBufferSize) As Byte
'Private Const PCOutputBufferSize As Integer = 30
' ' If = 10, there's no transfer
'Private PCOutputBuffer(1 To PCOutputBufferSize) As Byte
'Private Const Buffer30Size As Integer = 30
'Private Buffer30(1 To Buffer30Size) As Byte
'Private Queue2(1 To 30) As Byte
'Private Queue3(1 To 30) As Byte
'---
Dim HeaderStr As String
Dim ByteArr7(1 To 10) As Byte
'Dim ByteArrReady(1 To 10) As Byte
Private Const TXpin As Byte = 13
'Private Const TXpin2 As Byte = 14 'false TX pin
'Private Const Com3Baud As Integer = 300
 ' baud rate for FM TX
 ' Valid range 300 to 19200 baud.
Private Const IdleTime As Single = 0.35 'seconds
 ' Idle time of 10+3 bytes duration.
 ' For UART serial interface timing purposes.
 ' To prevent byte framing error.
'---
Sub Main()
 'Dim RFData As Byte
 'dim Temp1620 as single
 'dim Temp as byte
 'Dim Temp2 As Byte

 Dim NonDimVolt As Single
 Const ADCPin As Byte = 14
 Dim V_T As Single 'Votage across thermistor
 Const R1 As Single = 1500.0 'ohms
 Dim R_T As Single
 Dim T_T As Single
 'Steinhart Coefficients for 3K3A:
 Const A_T As Single = 1.405027E-3
 Const B_T As Single = 2.369386E-4
 Const C_T As Single = 1.012660E-7
 'Dim T_str As String

 'debug.print "Ready"
 'Call OpenPCchannel

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
64

 Call OpenRFchannel
 Call DefineTrueTX
 'Call OpenQueue(Buffer30, Buffer30Size)
 'Call OpenQueue(Queue2, 30)
 'Init the DS1620
 'config_1620
 'start_convert
 'RFData = 0 ' not used

 HeaderStr = "Start" ' Header String '5 char
 Call InitHeader

 Do
 'Temp1620 = Read1620
 'debug.print "DS1620: "; cstr(Temp1620)
 ''Temp2 = CByte(Temperature*2.0)

 ' Temp2 = CByte(Temperature*2)
 ' gives an error "Type Mismatch"
 ' 2 is Integer
 ' 2.0 is Single
 ''Call PutQueue(OutputBuffer, Temp2, 1)' send data
 ' Call PutQueue(OutputBuffer, 123, 1)' send data
 ' Call PutQueue(OutputBuffer, 123+Temp, 1)' send data

 Call GetADC (ADCPin , NonDimVolt)
 V_T = NonDimVolt * 5.0 'Actual voltage in volts

 R_T = (V_T * R1) / (5.0 - V_T)
 'Resistance of thermistor

 T_T = 1.0 / _
 (A_T + B_T*Log(R_T) + C_T*Pow(Log(R_T),3.0)) _
 - 273.15
 'Temperature of thermistor in deg Celcius

 T_T = CSng(CInt(T_T*10.0)) * 1.0 / 10.0
 ' Round down to 1 decimal place

 debug.print "Thermistor: "; cstr(T_T)

 'T_str = CStr(T_T)
 'Call PutQueueStr(OutputBuffer, T_str)' send data, TX
 'debug.print 'CR LF --- new line
 'T_T = CSng(CInt(T_T)) ' Testing
 ' Round down to 0 decimal place
 'Temp2 = CByte(T_T*2.0)
 'Call PutQueue(OutputBuffer, Temp2, 1)' send data
 'Pi = 3.14159
 'Call PutQueue(OutputBuffer, Pi, 4)
 'Call Tester
 'Call DefineFalseTX
 'Call BusyFM
 'Call DefineTrueTX
 Call SendData(T_T)

 delay 4.1 'effectively repeating every 5 seconds
 Loop
End Sub
'---
Sub OpenRFchannel()
' Open the RF communications channel.
 ' Open input and output queues.
 Call OpenQueue(InputBuffer, InputBufferSize)
 Call OpenQueue(OutputBuffer, OutputBufferSize)
 ' Configure Com3 to transmit on I/O pin TXpin.
 ' Not interested in receiving anything,
 ' so use pin 0 for the receive pin
 ' (pin 0 is a dummy pin).

End Sub
'---
Sub DefineTrueTX()
 Call DefineCom3(0, TXpin, bx1000_1000)
 ' inverted, no parity, 8 bits.
 ' Open Com3 at Com3Baud baud.
 Call OpenCom(3, 300, InputBuffer, OutputBuffer)

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
65

 Call Sleep(0.5)
End Sub
'---
'Sub DefineFalseTX()
' Call DefineCom3(0, TXpin2, bx1000_1000)
' ' inverted, no parity, 8 bits.
'
' ' Open Com3 at Com3Baud baud.
' Call OpenCom(3, 300, InputBuffer, OutputBuffer)
' Call Sleep(0.5)
'End Sub
'---
'Sub BusyFM()
' Dim Count As Integer
' For Count = 1 To 12
' Call PutPin(TXpin, bxOutputLow)
' Call Sleep(0.1)
' Call PutPin(TXpin, bxOutputHigh)
' Next
'End Sub
'---
'Sub OpenPCchannel()
'' Open the serial communications channel.
' ' Open input and output queues.
' Call OpenQueue(PCInputBuffer, PCInputBufferSize)
' Call OpenQueue(PCOutputBuffer, PCOutputBufferSize)
'
' ' No need to DefineCom3
'
' Call OpenCom(1, 19200, PCInputBuffer, PCOutputBuffer)
' Call Sleep(0.5)
'End Sub
'---

Sub SendData(T_T As Single)

 Dim FullStr As String
 Dim ByteArr1(1 To 15) As Byte
 Dim CurrCharStr As String * 1
 Dim Count As Byte

 FullStr = HeaderStr & CStr(T_T) & _
 " " '10 space
 Debug.Print "Check Point : SendData"
 '---------------------------
 ' 5 (HeaderStr) + 10 (space) = 15
 For Count = 1 To 15
 CurrCharStr=Mid(FullStr,Count,1)
 'String expression cannot be
 ' used as function argument.
 ByteArr1(Count) = Asc(CurrCharStr)
 ' debug.print CurrCharStr ; " " ;
 Next
 '---------------------------------
 'Serial interface timing purpose:
 Call PutQueue(OutputBuffer, ByteArr7, 10)
 Delay IdleTime
 Call PutQueue(OutputBuffer, ByteArr7, 10)
 Delay IdleTime
 '---------------------------------
 'Finally send the header with data
 Call PutQueue(OutputBuffer, ByteArr1, 15)
 debug.print "Sent the data."
End Sub
'-----------------------------
Sub InitHeader()
' Dim ReadyStr As String
' Dim CurrCharStr As String * 1
 Dim Count As Byte
' ReadyStr = "abcdefghij"
 '---------------------------------
 'Serial interface timing purposes:
 For Count = 1 To 10
 ByteArr7(Count) = 55 'Asc("7")
 Next
 'Str7 = "7777777777" '10 7's
 '-------------------------

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
66

End Sub
'---
'Sub Tester()
'
' 'Dim Pi As Single
' Dim TestAsc As Byte
' Dim TestChr As String
'
' TestAsc = Asc("7")
' debug.print CStr(TestAsc)
'
' TestChr = Chr(255)
' debug.print TestChr
'
'End Sub
'---

A.2 Code for Receiver
' RxMain.bas
' Pin 13 receives data from the Receiver chip.
' Pin 15 is connected to the buzzer.
' Pins 6 to 12 are used for the LCD screen.
' Pins 16 to 18 are attached to PushButtons 1 to 3
' Pin 14 is connected to LED for Fever indication.

Option Explicit
'Note: Queue buffers have implicit 9 bytes overhead.
Private Const InputBufferSize As Integer = 30
Private InputBuffer(1 To InputBufferSize) As Byte

Private Const OutputBufferSize As Integer = 30
Private OutputBuffer(1 To OutputBufferSize) As Byte

Private Const PCInputBufferSize As Integer = 30
Private PCInputBuffer(1 To PCInputBufferSize) As Byte

Private Const PCOutputBufferSize As Integer = 30
' If = 10, there's no transfer
Private PCOutputBuffer(1 To PCOutputBufferSize) As Byte

Private Const SpeakerPin As Byte = 15
Private Const RXpin As Byte = 13 'Receive data from RX chip
Private Const PB1Set As Byte = 16 'Set Button
Private Const PB2Up As Byte = 17 'Up button
Private Const PB3Down As Byte = 18 'Down button
'Private Const PB4Clear As Byte = 17 'Clear button
 'acknowledge alarm
Private Const LightPin As Byte = 14 'LED pin

'Dim RFData As Byte
'Dim FeverPoint As Single = 37.5 'default 37.5 deg C
 'Cannot write the value here.
 'Only write the value for Const.
Dim FeverPoint As Single 'Fever Threshold

Dim DumpByte As Byte
'Dim StatusQueueDelay As Single
Dim TimeLastRX As Single
Dim WaitInterval As Single
Dim TimeToCheck As Single
Dim TimeNow As Single
Dim CUMissing As Boolean
Dim TimeLastPC1 As Single
Dim ResendInterval As Single

'--
Public Sub Main()

 Dim T_Str As String * 5
 Dim CurrByte As Byte
 Dim HeaderStr As String * 5
 Dim RecogChar As String * 1
 Dim MatchIndex As Byte

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
67

 'Dim Match7 As Integer
 Dim Count As Byte

 Dim T_Index As Byte
 Dim T_T As Single
 Dim T_Success As Boolean

 PutPin PB1Set , bxInputPullup
 'Input with BasicX's internal 120k pullup resistor
 PutPin PB2Up , bxInputPullup
 PutPin PB3Down , bxInputPullup
 'PutPin PB4Clear , bxInputPullup

 FeverPoint = 37.5 'default 37.5 deg C

 LCDInit
 delay 0.1
 LCDClearDisplay

 Call OpenPCchannel 'IMPORTANT !!!
 Call OpenRFchannel

 HeaderStr = "Start"
 'StatusQueueDelay = 0.05
 '0.03 possible if:
 ' Debug.Print Chr(CurrByte)
 ' Without this statement,
 ' Does not work all the time
 '0.02 cannot work
 '--------------------------
 T_Str = " " 'initialize string.
 RecogChar = " "
 '---------------------------
 TimeLastRX = Timer
 WaitInterval = 15.0 'Wait 15 seconds for the Child's Unit ###
 CUMissing = False
 ResendInterval = 5.0 'Wait 5 s before resending 1 to PC

 'LCDClearDisplay
 LCDMoveCursorPos 1,1
 LCDPrint "Temp : " 'spaces to erase previous value.

 Do
 'Debug.Print "MatchIndex at start = " ; CStr(MatchIndex)
 MatchIndex = 1
 'Match7 = 0
 'If data is present in the serial queue, get it
 'Do While StatusQueue(InputBuffer)
 'There's always data coming in anyway,
 'due to RX chip giving nonsense because
 'of Automatic Gain Control

 Do While True

 Call GetQueue(InputBuffer, CurrByte, 1)

 ''Debug.Print Chr(CurrByte) 'Test
' If CurrByte = 55 Then 'Asc("7") = 55
' Match7 = Match7 + 1 'Byte "7" detected
' 'Debug.Print "7 is detected."
' Else
' Match7 = 0
' End If
'
' If Match7 >= 5 Then ' 5 7's detected
' For Count = 1 To 25
' Call GetQueue(InputBuffer, DumpByte, 1)
' Next
' 'Match7 = 0
' Exit Do
' End If

 RecogChar = Mid(HeaderStr,MatchIndex,1)
 If CurrByte = Asc(RecogChar) Then
 MatchIndex = MatchIndex + 1 'Match found
 'Debug.Print "MatchIndex = " ; CStr(MatchIndex)
 Else

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
68

 MatchIndex = 1
 End If

 If MatchIndex >= 6 Then '"Start" received
 'Debug.Print "Header Recognized."
 'MatchIndex = 1 'original
 Exit Do
 End If

 'Delay StatusQueueDelay
 CheckButton
 CheckTime

 Loop

 'If (MatchIndex >= 6) Then
 ' --- Definitely True at this point
 'Debug.Print "Check Point : Header detected"

 For T_Index = 1 To 5 '100.0 for temperature
 Call GetQueue(InputBuffer, CurrByte, 1)
 'Debug.Print Chr(CurrByte) 'Test
 Mid(T_Str,T_Index,1) = Chr(CurrByte)
 Next

 'freqout SpeakerPin,4000,4000,100
 'Will result in temperature "2!" ?
 'Now no more. Nevermind.
 'Delay StatusQueueDelay
 'End If

 'Delay 1.0 ' - even worse. T_Success always false.
 'For Count = 1 To 21 '30-9
 ' Call GetQueue(InputBuffer, DumpByte, 1)
 ' 'Remove from the queue and do nothing
 'Next
 'Debug.Print T_Str
 'Forgot to initialize the string!!!
 'Mid function only modifies one section.
 'The rest of the string is nonsense.

 Call ValueS(T_Str, T_T, T_Success)
 'T_T = CSng(T_Str) cannot work.

 If T_Success = True Then
 'Debug.Print "Success = True"
 'Debug.Print CStr(T_T)
 Call Action(T_T)
 Else
 'Debug.Print "Success = False"
 End If

 CheckButton
 CheckTime

 Loop

End Sub
'--
'Sub BufferClear7()
'End Sub
'--
Sub CheckButton()

 ' check if button is pressed
 If GetPin(PB1Set) = 0 Then
 Delay 0.005 'bounce settle down
 If GetPin(PB1Set) = 0 Then 'button down

 'Wait for it to go up.
 Do
 ClearInputBuffer
 'So that it won't rush through
 'all the accumulated values in queue.
 Loop Until GetPin(PB1Set) = 1

 FreqOut SpeakerPin,4000,4000,200

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
69

 FreqOut SpeakerPin,8000,8000,200
 SetFeverPoint

 End If
 End If

End Sub
'--
Sub CheckTime()

 If CUMissing = True Then
 TimeNow = Timer
 TimeToCheck = TimeLastPC1 + ResendInterval
 'cross midnight
 If (TimeToCheck - TimeNow) > (ResendInterval + 1.0) Then
 TimeToCheck = TimeToCheck - 86400.0
 End If

 If TimeNow > TimeToCheck Then
 'Send 1 to PC every 5 seconds.
 SendToPC(1.0)
 TimeLastPC1 = Timer
 CUMissingBeep
 End If

 Exit Sub
 End If

 TimeNow = Timer
 TimeToCheck = TimeLastRX + WaitInterval
 'cross midnight
 If (TimeToCheck - TimeNow) > (WaitInterval + 1.0) Then
 TimeToCheck = TimeToCheck - 86400.0
 End If

 If TimeNow > TimeToCheck Then

 LCDClearDisplay
 LCDMoveCursorPos 1,1
 LCDPrint "Child's Unit"
 LCDMoveCursorPos 2,1
 LCDPrint "not detected"

 SendToPC(1.0)
 TimeLastPC1 = Timer
 CUMissingBeep
 CUMissing = True

 End If

End Sub
'--
Sub SendToPC(ByVal T_T As Single)

 Dim T_Str2 As String * 5

 T_Str2 = CStr(T_T)
 Call PutQueueStr(PCOutputBuffer, T_Str2)' send data to PC
 Delay 1.0

End Sub
'--
Sub CUMissingBeep()

 'FreqOut SpeakerPin,8000,8000,100
 'Delay 0.2
 FreqOut SpeakerPin,4000,4000,10

End Sub
'--
Sub ClearInputBuffer()

 If StatusQueue(InputBuffer) Then
 Call GetQueue(InputBuffer, DumpByte, 1)
 'Remove from the queue and do nothing

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
70

 End If

End Sub
'--
Sub SetFeverPoint()

 LCDClearDisplay
 LCDMoveCursorPos 1,1
 LCDPrint "Fever Setting:"
 DisplayFeverSet

 Do
 ' check if button is pressed
 If GetPin(PB2Up) = 0 Then 'Up button
 Delay 0.005 'bounce settle down
 If GetPin(PB2Up) = 0 Then 'button down

 'Wait for it to go up.
 Do
 ClearInputBuffer
 'So that it won't rush through
 'all the accumulated values in queue.
 Loop Until GetPin(PB2Up) = 1

 FeverPoint = FeverPoint + 0.5
 DisplayFeverSet
 End If

 ElseIf GetPin(PB3Down) = 0 Then'Down Button
 Delay 0.005 'bounce settle down
 If GetPin(PB3Down) = 0 Then 'button down

 'Wait for it to go up.
 Do
 ClearInputBuffer
 'So that it won't rush through
 'all the accumulated values in queue.
 Loop Until GetPin(PB3Down) = 1
 FeverPoint = FeverPoint - 0.5
 DisplayFeverSet
 End If

 ElseIf GetPin(PB1Set) = 0 Then'Exit Setting
 Delay 0.005 'bounce settle down
 If GetPin(PB1Set) = 0 Then 'button down

 'Wait for it to go up.
 Do
 ClearInputBuffer
 'So that it won't rush through
 'all the accumulated values in queue.
 Loop Until GetPin(PB1Set) = 1

 FreqOut SpeakerPin,8000,8000,200
 'Delay 0.2
 FreqOut SpeakerPin,4000,4000,200
 LCDClearDisplay
 LCDMoveCursorPos 1,1
 LCDPrint "Temp : "
 'spaces to erase previous value.
 TimeLastRX = Timer
 CUMissing = False 'to enable CheckTime
 Exit Sub
 End If
 End If
 Loop
End Sub
'--
Sub DisplayFeverSet ()

 'Debug.Print "Fever Setting: "; 'to PC
 '; for same line
 'LCDMoveCursorPos 1,1

 'LCDPrint "Fever Setting:"
 'Debug.Print CStr(FeverPoint) 'Automatically new line.

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
71

 LCDMoveCursorPos 2,1
 LCDPrint CStr(FeverPoint)
 LCDPrint " " '5 more spaces to clear 111.1

End Sub
'---
Sub Action (ByVal T_T As Single)

 Dim T_Str2 As String * 5
 Dim Count As Byte
 Dim Count2 As Byte

 T_Str2 = CStr(T_T)
 'display Temp
 'debug.print "Temp: "; 'to PC
 Call PutQueueStr(PCOutputBuffer, T_Str2)' send data to P
 Delay 1.0
 'Debug.Print T_Str2

 LCDClearDisplay
 LCDMoveCursorPos 1,1
 LCDPrint "Temp : " 'spaces to erase previous value.

 'Temp = CSng(RFData) / 2.0
 'RFData is twice the temperature.

 LCDMoveCursorPos 1,8
 LCDPrint T_Str2

 if T_T >= FeverPoint then 'threshold FeverPoint.
 LCDMoveCursorPos 2,1
 LCDPrint "Fever"

 For Count2 = 1 To 2
 For Count = 1 To 2
 Call PutPin(LightPin, bxOutputHigh)
 freqout SpeakerPin,8192,8192,50 '50ms
 Call PutPin(LightPin, bxOutputLow)
 Delay 0.050 ' 0.05s

 Call PutPin(LightPin, bxOutputHigh)
 freqout SpeakerPin,4096,4096,50 '50ms
 Call PutPin(LightPin, bxOutputLow)
 Delay 0.050 ' 0.05s
 Next
 Delay 0.6
 LCDMoveCursorPos 2,1
 LCDPrint " " 'to erase
 Next

 LCDMoveCursorPos 2,1
 LCDPrint "Fever"
 end if

 'if RFData < 128 then 'integer value for temperature.
 ' debug.print cstr(RFData)
 ' LCDMoveCursorPos 1,8
 ' LCDPrint cstr(RFData)
 ' if RFData >= 31 then 'threshold of 31 deg C.
 ' freqout SpeakerPin,4000,4000,100
 ' end if
 'else 'temperature is an integer + 0.5
 ' debug.print cstr(RFData-128);".5"
 ' LCDMoveCursorPos 1,8
 ' LCDPrint cstr(RFData-128)
 ' LCDPrint ".5"
 'end if

 TimeLastRX = Timer
 CUMissing = False

End Sub
'--
Sub OpenRFchannel()
' Open the RF communications channel.
 ' Open input and output queues.
 Call OpenQueue(InputBuffer, InputBufferSize)

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
72

 Call OpenQueue(OutputBuffer, OutputBufferSize)
 'BasicX uses Com3 serial port.
 ' Configure Com3 to receive on I/O pin RXpin.
 ' Not interested in transmitting anything,
 ' so use pin 0 for the transmit pin.
 ' (pin 0 is a dummy pin).
 ' PutPin RXpin , bxInputTristate 'Added this line
 'PutPin RXpin , bxInputPullup
 Call DefineCom3(RXpin, 0, bx1000_1000)
 ' inverted, no parity, 8 bits.
 'Call DefineCom3(RXpin, 0, bx1010_0111)
 'inverted, odd parity, 7 data bits.
 ' Open Com3 at 300 or 19200 baud.
 Call OpenCom(3, 300, InputBuffer, OutputBuffer)
 'Call OpenCom(3, 9600, InputBuffer, OutputBuffer)
 Call Sleep(0.5)
End Sub
'---
Sub OpenPCchannel()
' Open the serial communications channel.
 ' Open input and output queues.
 Call OpenQueue(PCInputBuffer, PCInputBufferSize)
 Call OpenQueue(PCOutputBuffer, PCOutputBufferSize)

 ' No need to DefineCom3
 Call OpenCom(1, 19200, PCInputBuffer, PCOutputBuffer)
 Call Sleep(0.5)
End Sub
'---

A.3 Code for LCD Display
'LCDLib.bas
Option Explicit

public const rs as byte = 6
public const rw as byte = 7
public const en as byte = 8

public const d3 as byte = 12
public const d2 as byte = 11
public const d1 as byte = 10
public const d0 as byte = 9

Public Sub LCDPrint(byVal Text as string)
dim TextLen as byte
dim i as byte
dim TempStr as string
 'Print a string
 TextLen = cbyte(len(text))
 if TextLen > 0 then
 for i= 1 to TextLen
 TempStr = Mid(Text,i,1)
 LCD4bit Asc(TempStr)
 next
 end if
End Sub

Public Sub LCDMoveCursorPos (_
 byVal Line as byte, byVal Pos as byte)
 'data : move cursor to specific line and pos
 if (Line>0) and (Line<3) and (Pos>0) and (Pos<17) then
 if Line = 1 then
 LCDCmd (bx1000_0000 + Pos -1)
 end if
 if Line = 2 then
 LCDCmd (bx1000_0000 + Pos + &H3F)
 end if
 end if
End Sub

Public Sub LCDMoveCursorRight()
 'data : move cursor right
 LCDCmd bx0001_0100

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
73

End Sub

Public Sub LCDMoveCursorLeft()
 'data : move cursor left
 LCDCmd bx0001_0000
End Sub

Public Sub LCDCursorBlinkOn()
 'data : Set Cursor On with blink
 LCDCmd bx0000_1111
End Sub

Public Sub LCDCursorBlinkOff()
 'data : Set Cursor On - no blink
 LCDCmd bx0000_1110
End Sub

Public Sub LCDCursorOff()
 'data : Set Cursor Off
 LCDCmd bx0000_1100
End Sub

Public Sub LCDCursorOn()
 'data : Set Cursor On
 LCDCmd bx0000_1110
End Sub

Public Sub LCDDisplayOn()
 'data : Set Display On
 LCDCmd bx0000_1100
End Sub

Public Sub LCDDisplayOff()
 'data : Set Display Off
 LCDCmd bx0000_1000
End Sub

Public Sub LCDClearDisplay()
 'data : clr screen
 LCDCmd &H01
End Sub

Public Sub PulseX()
 putpin en,1
 putpin en,0
 delay 0.00001
End Sub

Public Sub LCDCmd(byval data as byte)
dim tempH as byte
dim tempL as byte
 putpin rs,0
 putpin rw,0
 delay 0.00001
 LCD4bit data
 putpin rs,1
 putpin rw,0
 delay 0.00001
End Sub

Public Sub LCD4bit(byval LCDdata as byte)
dim data as byte
dim i as byte
data = LCDdata
for i = 1 to 2
 putpin d3,(data and bx1000_0000)
 data = data * 2
 putpin d2,(data and bx1000_0000)
 data = data * 2
 putpin d1,(data and bx1000_0000)
 data = data * 2
 putpin d0,(data and bx1000_0000)
 data = data * 2
 PulseX
next
End Sub

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
74

Public Sub LCDInit()
dim i as byte
for i = 1 to 2
 putpin en,0
 putpin rs,0
 putpin rw,0
 'data : H28
 LCD4bit &H28
 'data : H0C
 LCD4bit &H0C
 'data : H03
 LCD4bit &H03
 delay 0.001
 LCD4bit &H03
 delay 0.001
 'data : H01
 LCD4bit &H01
 delay 0.001
 'data : H06
 LCD4bit &H06
 'data : H02
 LCD4bit &H02
 delay 0.001
 putpin rs,1
 putpin rw,0
 delay 0.01
next
End Sub
'---

A.4 Code for DS1620 Temperature Sensor
' DS1620lib.bas

Private Const DQ As Byte = 5 ' BasicX-24 pins
Private Const CLK As Byte = 6
Private Const RST As Byte = 7

Private o_byte As Byte
Private i_9_bit as integer

'===
Function Read1620() as single
 measureT
 Read1620 = CSng(i_9_bit) * 0.5
 'i_9_bit is double the temperature
end Function
'===
Sub config_1620()

 putpin RST,0
 putpin CLK,1
 putpin RST,1

 o_byte = &H0C ' Write Config [0Ch]
 out_byte

 o_byte = &H02
 ' -- CPU Use Bit BasicX CPU
 ' 1 is communicating to it
 ' 0000 0010
 ' 0 -- 1SHOT = 0, so there is continuous
 ' temperature conversion.
 out_byte
 putpin RST,0
 delay 0.2 ' Writing to E^2 req's 10ms at room temperature.

End Sub
'---
Sub out_byte()
 dim n as byte
 dim temp as byte

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
75

 for n=0 to 7 ' Send 8 bits into DS1620
 temp = o_byte and &H01 '&H hexadecimal no. 0000 0001
 putpin DQ,temp 'temp always has a value of 0 or 1.
 putpin CLK,0
 'PutB(temp)
 'NewLine
 putpin CLK,1
 ' For data input to DS1620, data must be valid
 ' during the rising edge of the clock.
 o_byte = o_byte \ 2 ' All bits shift right.
 next

End Sub
'--
Sub start_convert()
 putpin CLK,1
 putpin RST,1
 o_byte = &HEE ' Start Convert [EEh]
 out_byte
 putpin RST,0

End Sub
'---
Sub stop_convert()
 putpin CLK,1
 putpin RST,1
 o_byte = &H22 ' [22h]
 out_byte
 putpin RST,0

End Sub
'--
Sub measureT()
 putpin CLK,1
 putpin RST,1 ' Initiate data transfer
 o_byte = &HAA ' Read Temperature [AAh]
 out_byte
 read_9_bits
 putpin RST,0 ' Terminate communications

End Sub
'--
Sub read_9_bits()
 dim n as byte
 dim temp as byte

 i_9_bit = 0

 PutPin DQ , bxInputTristate
 'To receive data from DS1620 chip
 'Still keep the 1k resistor.

 for n=0 to 8
 ' The next 9 clock cycles will output the last
 ' temperature conversion result, LSbit first.
 putpin CLK,0 ' Data bits are output on the
 ' falling edge of the clock.
 temp = getpin(DQ)
 if temp = 1 then ' if that bit = 1
 select case n
 case 0 ' bit position 0
 ' LSbit (0.5 deg C)
 i_9_bit = i_9_bit + 1
 case 1 ' bit position 1
 i_9_bit = i_9_bit + 2
 case 2 ' bit position 2, etc
 i_9_bit = i_9_bit + 4
 case 3
 i_9_bit = i_9_bit + 8
 case 4
 i_9_bit = i_9_bit + 16
 case 5
 i_9_bit = i_9_bit + 32
 case 6
 i_9_bit = i_9_bit + 64
 case 7
 i_9_bit = i_9_bit + 128

Febrile Fits Monitor Appendix A Source Codes for Microcontrollers
76

 case 8
 i_9_bit = i_9_bit + 256
 end select
 end if

 putpin CLK,1
 next

End Sub

Febrile Fits Monitor Appendix B Source Codes for Excel VB
77

Appendix B Source Codes for Excel Visual
Basic

B.1 Code for Module: StartForm
Option Explicit

 Public BusySaving As Boolean
 Public BusyModifying As Boolean
 'Public StrErr1 As String
 Public CarryOn As Boolean

'----------------------------------
'Private
'Sub UserForm_Layout()

Sub StartForm1()

 ' Do these first.
 ' Open "TempSens.xls" and "TempLog.xls"
 ' Ensure that Web_Update1 & 2 & 3 are enabled.
 ' For "TempSens.xls", publish TempChart to website,
 ' (without interactivity) as TempChart.htm

 ' Click inside the 'StartForm1' function, then run.
 ' Connect the receiver board anytime,
 ' before or after 'StartForm1'.
 '---
 'Dim StrErr2 As String
 'StrErr2 = "Same Line"
 ' ASCII Values 8, 9, 10, and 13 convert to
 ' backspace, tab, linefeed, and
 ' carriage return characters, respectively.
 ' They have no graphical representation but,
 ' depending on the application,
 ' can affect the visual display of text.

 CarryOn = True
 BusySaving = True

 Open "Report.txt" For Append As #77
 'Print #77, "Error Logging has started"; Tab(2); "Same Line"
 ' It won't stay on the same line.
 'Print #77, StrErr1, Tab(2), StrErr2
 ' It won't stay on the same line.
 'StrErr1 = CDate(Now) & Chr(9) & "Error logging has started."
 'Print #77, StrErr1, 'Tab is inserted.
 'Print #77, StrErr1; 'Joined up with the next one.
 'Print #77, StrErr1 'Go to next line
 'Write #77, "Second line"
 'Write #77,
 'Write #77, "3rd line after skipping"
 'Write #77,
 Print #77, CDate(Now),
 Print #77, "Error logging has started."

 Close #77
 'Exit Sub

Febrile Fits Monitor Appendix B Source Codes for Excel VB
78

 Call Web_Update1
 'Close #77
 If CarryOn = False Then Exit Sub

 BusySaving = False
 BusyModifying = False
 'TimerBusy = False
 NumTimers = 0

 Call FMain.StartForm2

End Sub
'----------------------------------

Sub Web_Update1()

 On Error GoTo WU1err

 'Excel.Application.
 Workbooks("TempLog.xls").Activate
 '.Worksheets("TempLog").Select
 'Workbooks("TempLog.xls"). 'Cannot hide it.

 Workbooks("TempLog.xls").SaveAs Filename:= _
 "ftp://www.innovation-invention.com/d:/innovation-
invention/Telemetry/TempLog.xls" _
 , FileFormat:=xlNormal, Password:="", WriteResPassword:="", _
 ReadOnlyRecommended:=False, CreateBackup:=False

 Workbooks("TempSens.xls").Activate
 'Workbooks("TempSens.xls").Worksheets.Select
 Exit Sub

WU1err:

 CarryOn = False

 MsgBox "Make sure internet connection is available." _
 & Chr(13) & "Open TempLog.xls" _
 & Chr(13) & "Open TempSens.xls" _
 & Chr(13) & "Select the chart page." _
 & Chr(13) & "Please republish TempChart.htm to the FTP server:" _
 & Chr(13) & "Save as web page to" _
 & Chr(13) & "innovation-invention.com/Telemetry/TempChart.htm" _
 & Chr(13) & "" _
 & Chr(13) & "Connect all hardware." _
 & Chr(13) & "Finally, run the Telemetry Macro using 'Ctrl+T'" _
 , vbExclamation

 ' The following section does not work.
 Open "Report.txt" For Append As #77 'Close and open too fast? No.
 Print #77, CDate(Now),
 Print #77, "Error in Web_Update1 (1st save)."
 Print #77, CDate(Now),
 Print #77, "Error logging has ended."
 Write #77,
 Close #77

 Exit Sub

End Sub

B.2 Code for Form: FMain
'Visual Basic 6 - code to draw graph from serial data
'----------------------------------
Option Explicit

 Dim CurrentTime As Variant
 Dim NewTime As Variant
 Dim FirstData As Boolean

Sub StartForm2()

ftp://www.innovation-invention.com/d:/innovation-

Febrile Fits Monitor Appendix B Source Codes for Excel VB
79

 'Init Stuff
 'For VB6, it will be Form_Load()
 'txtDisp.Visible = False
 txtDisp.Text = ""

 cmdOpen.Enabled = True
 cmdClose.Enabled = False

 cmdTimerStart.Enabled = True
 cmdTimerStop.Enabled = False

 '---
 'COMM STATUS
 MSComm1.RThreshold = 1
 ' Fire Rx Event Every One Bytes

 MSComm1.InputLen = 7 'changed from 1
 ' When Inputting Data, Input 7 Bytes at a time

 MSComm1.Settings = "19200,N,8,1"
 ' 19200 Baud, No Parity, 8 Data Bits, 1 Stop Bit

 MSComm1.CommPort = 1
 ' Open COM1

 MSComm1.DTREnable = False
 'Disable ACK
 '-------------------------------------
 ' CurrentTime = Now - TimeSerial(0, 1, 0)
 ' - 1 min so that Update_Data starts immediately
 ' when the first Data comes in
 'FirstData = True

 FMain.Show

End Sub
'---------------------------
Private Sub cmdExit_Click()

 Call cmdTimerStop_Click
 Call cmdClose_Click

 Open "Report.txt" For Append As #77
 Print #77, CDate(Now),
 Print #77, "Error logging has ended."
 Write #77,
 Close #77

 Unload FMain

End Sub
'--
Private Sub cmdClear_Click()

 'If cmdOpen.Enabled = True And cmdTimerStart.Enabled = True Then
 Call cmdTimerStop_Click
 Call cmdClose_Click

 Excel.Application.Workbooks("TempSens.xls").Activate
 Workbooks("TempSens.xls").Worksheets("Data").Select

 Workbooks("TempSens.xls").Sheets("Data").Range("B2:D1441").ClearContents
 txtDisp.Text = ""
 'Range("G1441").

End Sub
'----------------------------
'Private
Sub cmdOpen_Click()
 'Open Port
 On Error GoTo CommPortErr

 Excel.Application.Workbooks("TempSens.xls").Activate
 ' So that when you receive the serial data,
 ' it can find the workbook.
 If Not MSComm1.PortOpen Then

Febrile Fits Monitor Appendix B Source Codes for Excel VB
80

 MSComm1.PortOpen = True
 End If

 cmdOpen.Enabled = False
 cmdClose.Enabled = True

Exit Sub
CommPortErr:
 MsgBox "The serial port could not be opened." _
 & Chr(13) & "Please make sure that other programs" _
 & Chr(13) & "are not using the serial port." _
 , vbExclamation
 Exit Sub
End Sub

'----------------------------------
'Private
Sub cmdClose_Click()
 'Close Port
 On Error GoTo CommPortErr

 If MSComm1.PortOpen Then
 MSComm1.PortOpen = False
 End If

 cmdOpen.Enabled = True
 cmdClose.Enabled = False

Exit Sub
CommPortErr:
 MsgBox "The serial port could not be closed." _
 , vbExclamation
 Exit Sub
End Sub

'--
'Private
Sub cmdTimerStart_Click()
 Dim interval As Double

 ' get the interval value
 'interval = TimeSerial(0, 0, 5)

 Excel.Application.Workbooks("TempSens.xls").Activate
 Workbooks("TempSens.xls").Worksheets("Data").Select
 interval = CDbl(Workbooks("TempSens.xls").Sheets("Data").Range("G1441").Value)
 'Period of free time between successive updates.
 'Repetition period may be longer,
 'due to slow internet connection
 'or slow processor speed.

 Workbooks("TempSens.xls").Sheets("Data").Range("F1441") = 0
 'Zero the Curr Temp

 ' start the timer with the specified interval
 Call timer_Start(interval)

 cmdTimerStart.Enabled = False
 cmdTimerStop.Enabled = True

End Sub
'--
'Private
Sub cmdTimerStop_Click()
 ' stop the timer
 Call Timer_Stop

 cmdTimerStart.Enabled = True
 cmdTimerStop.Enabled = False

End Sub

'----------------------------------
'Private
Sub MSComm1_OnComm()

Febrile Fits Monitor Appendix B Source Codes for Excel VB
81

 On Error GoTo OCerr
 'On Comm
 Dim Data As String
 Dim DataLen As Integer
 'Dim AscData As Integer
 Dim DataNum As Integer

 If BusySaving = True Then Exit Sub

 If MSComm1.CommEvent = comEvReceive Then
 Data = MSComm1.Input ' Get Data (string)
 'This is the temperature in deg C.
 '(1 decimal pl.)
 DataLen = Len(Data) 'No. of char's in string
 'AscData = Asc(Data)
 'Data is a single character
 'The Ascii value will be from 0 to 255
 '(numeric)

 txtDisp.Text = txtDisp.Text + Data + " " + vbCrLf _
 + "DataLen = " + CStr(DataLen) + " " + vbCrLf
 ' CStr will convert the numeric data to String.

 'Temperatures in deg C.(1 decimal pl.)
 'Typical values: 36.9, 37.9, 38.8

 If (DataLen = 5) And IsNumeric(Data) Then
 DataNum = CSng(Data)
 If DataNum > 0 And DataNum < 100 Then
 'Continue
 Else
 Exit Sub
 End If
 Else
 Exit Sub
 End If

 'ActiveWorkbook.
 'Workbooks("TempSens.xls").Worksheets("Data").Range("F1441") _
 = Data
 'Excel.Application
 'Excel.Application.ActivateMicrosoftApp
 '?Application.
 'Excel.Application.Workbooks("TempSens.xls").Activate
 'Workbooks("TempSens.xls").Activate
 '.Worksheets("Data").ActiveSheet
 'Application .Workbooks("index.xls").
 'AppActivate title[, wait]
 'AppActivate "TempSens.xls", False
 'Make sure there is no screen saver.
 'Excel.Application.Workbooks("TempSens.xls").Activate
 'Workbooks("TempSens.xls").Worksheets("Data").Select

 If BusySaving = True Then Exit Sub
 BusyModifying = True
 Workbooks("TempSens.xls").Activate
 Workbooks("TempSens.xls").Worksheets("Data").Select
 Workbooks("TempSens.xls").Sheets("Data").Range("F1441") = Data
 BusyModifying = False
 'There was always error here because the PC was
 ' busy saving the file, so you cannot write to the file.

 '' check time for 1 min
 'NewTime = Now
 'If NewTime >= CurrentTime + TimeSerial(0, 1, 0) Then
 ' Update_Data
 ' CurrentTime = NewTime
 'End If
 'If FirstData = True Then
 ' NewTime = Now
 ' FirstData = False
 ' Call Update_Data
 'End If

 End If
 Exit Sub
OCerr:

Febrile Fits Monitor Appendix B Source Codes for Excel VB
82

 'MsgBox ("Irregularity in MSComm1_OnComm. The program is still functioning well.")
 Open "Report.txt" For Append As #77
 Print #77, CDate(Now),
 Print #77, "Irregularity in MSComm1_OnComm."
 Close #77
 BusyModifying = False
 Exit Sub

End Sub
'----------------------------------

B.3 Code for Module: TimerModule
' Application.OnTimer does not work ?
' It is exactly the same code as planet-source-codes
' Now I will place the codes in a module,
' instead of the Form FMain.
' Yes. Finally, got it to work.
' Application.OnTimer only works in a Module, not a Form.

Option Explicit

 Dim abc As Boolean
 Dim timer_interval As Double
 Dim timer_enabled As Boolean
 'Public TimerBusy As Boolean
 Public NumTimers As Integer

Sub timer_Start(Optional ByVal interval As Double)
 If interval > 0 Then timer_interval = interval
 timer_enabled = True
 If timer_interval > 0 Then
 NumTimers = NumTimers + 1
 Application.OnTime (Now + timer_interval), "TimerModule.Timer_OnTimer"
 End If
 '.Workbooks ("TempSens.xls")
 'Timer_OnTimer ""
End Sub
'--
Sub Timer_OnTimer()

 'Excel.Application.Workbooks("TempSens.xls").Activate
 'If TimerBusy = True Then Exit Sub
 ' In case the timer interval is too short,
 ' and one instance of Update_Data is running.
 'TimerBusy = True

 If NumTimers > 1 Then
 Open "Report.txt" For Append As #77
 Print #77, CDate(Now),
 Print #77, "NumTimers > 1. The error is corrected."
 Close #77
 NumTimers = NumTimers - 1
 Exit Sub
 End If

 If timer_enabled = False Then
 NumTimers = 0
 Exit Sub
 End If
 'FMain.txtDisp.Text = FMain.txtDisp.Text + "abc" + vbCrLf

 Call Update_Data

 'TimerBusy = False
 NumTimers = NumTimers - 1
 If timer_enabled Then Call timer_Start

End Sub
'--
Sub Timer_Stop()
 ' stop the timer
 timer_enabled = False

Febrile Fits Monitor Appendix B Source Codes for Excel VB
83

End Sub
'--
'Private
Sub Update_Data()

 On Error GoTo UDerr

 If BusyModifying = True Then Exit Sub
 BusySaving = True

 abc = True

 Workbooks("TempSens.xls").Activate
 ' -- this one can get the xls file working
 ' -- It won't show up on the taskbar.
 Workbooks("TempSens.xls").Worksheets("Data").Select

 ' shift data up
 Workbooks("TempSens.xls").Sheets("Data").Range("B2:D1440").Value2 = _
 Workbooks("TempSens.xls").Sheets("Data").Range("B3:D1441").Value2
 'Must use Value2 (Variant), not Value,
 ' otherwise the date will be nonsense (1900)

 ' Create next data
 Workbooks("TempSens.xls").Sheets("Data").Range("B1441") = CDate(Now)

 'CDate(Sheets("Data").Range("B1440")) + TimeSerial(0, 1, 0)

 ' input temperature data
 Workbooks("TempSens.xls").Sheets("Data").Range("C1441") = _
 Workbooks("TempSens.xls").Sheets("Data").Range("F1441")
 'Location cell of Input Temperature Data

 Workbooks("TempSens.xls").Sheets("Data").Range("D1441").ClearContents
 If Workbooks("TempSens.xls").Sheets("Data").Range("C1441") = 0 Then
 Workbooks("TempSens.xls").Sheets("Data").Range("D1441").Value2 = _
 "Parent's Unit not detected."
 End If

 If Workbooks("TempSens.xls").Sheets("Data").Range("C1441") = 1 Then
 Workbooks("TempSens.xls").Sheets("Data").Range("D1441").Value2 = _
 "Child's Unit not detected."
 End If

 ' zero the old input at F1441
 'Workbooks("TempSens.xls").Worksheets("Data").Select
 Workbooks("TempSens.xls").Sheets("Data").Range("F1441") = 0

 'CurrentTime = NewTime
 ' check time for 1 min - test 5 sec
 'CDbl(TimeSerial(0,0,5))
 '1# / 24 / 60 / 60 * 5
 'CDbl(Range("G1441").Value)
 'timer_interval = Range("G1441").Value
 'NewTime = CurrentTime + CDbl(Range("G1441").Value)
 'Application.OnTime (Now + timer_interval), "Update_Data"

 Call Web_Update2
 Call Web_Update3

 Workbooks("TempSens.xls").Save 'Save locally

 'Excel.Application.Workbooks("TempSens.xls").Activate
 'Workbooks("TempSens.xls").Worksheets("Data").Select

 BusySaving = False

 Exit Sub
UDerr:
 'MsgBox ("Irregularity in Update_Data. The program is still functioning well.")
 Open "Report.txt" For Append As #77
 Print #77, CDate(Now),
 Print #77, "Error in Update_Data()."
 Close #77
 BusySaving = False
 Exit Sub

Febrile Fits Monitor Appendix B Source Codes for Excel VB
84

End Sub
'--
Sub Web_Update2()

 On Error GoTo WU2err

 Workbooks("TempLog.xls").Worksheets("TempLog").Range("B2:D1441").Value2 _
 = Workbooks("TempSens.xls").Worksheets("Data").Range("B2:D1441").Value2

 'Workbooks("TempLog.xls").Worksheets("TempLog").Select
 'Workbooks("TempLog.xls").Save 'Goes to server

 Workbooks("TempLog.xls").SaveAs Filename:= _
 "ftp://www.innovation-invention.com/d:/innovation-
invention/Telemetry/TempLog.xls" _
 , FileFormat:=xlNormal, Password:="", WriteResPassword:="", _
 ReadOnlyRecommended:=False, CreateBackup:=False

 Exit Sub
WU2err:
 'MsgBox ("Irregularity in Web_Update2. The program is still functioning well.")
 Open "Report.txt" For Append As #77
 Print #77, CDate(Now),
 Print #77, "Web_Update2: Could not upload TempLog.xls."
 Close #77
 Exit Sub

End Sub
'--
Sub Web_Update3()

 On Error GoTo WU3err

 'Excel.Application.
 Workbooks("TempSens.xls").Activate
 ' -- this one can get the xls file working
 ' -- It won't show up on the taskbar.
 ' -- should activate before selecting it.

 'Workbooks("TempSens.xls").Worksheets.Select
 Workbooks("TempSens.xls").Sheets("TempChart").Select

' With Workbooks("TempSens.xls").PublishObjects("index_17584")
' .HtmlType = xlHtmlStatic
' .Publish (True) 'changed to True
' 'True - replaces the file
' .AutoRepublish = False
' 'Don't automatically republish when saving
' End With ' Goes to server

 With Workbooks("TempSens.xls").PublishObjects("index_17584")
 .HtmlType = xlHtmlStatic
 .Filename = _
 "ftp://www.innovation-invention.com/d:/innovation-
invention/Telemetry/TempChart.htm"
 .Publish (True) 'changed to True
 'True - replaces the file
 .AutoRepublish = False 'Don't automatically republish when saving
 End With ' Goes to server

 Exit Sub
WU3err:
 Open "Report.txt" For Append As #77
 Print #77, CDate(Now),
 Print #77, "Web_Update3: Could not republish TempChart.htm."
 Close #77
 'Workbooks("TempSens.xls").Activate
 Exit Sub

End Sub

ftp://www.innovation-invention.com/d:/innovation-
ftp://www.innovation-invention.com/d:/innovation-

Febrile Fits Monitor Appendix C HTML Code
85

Appendix C HTML Code

TempChartControl.htm

<HTML>

<HEAD>

<TITLE> Real-time Temperature Chart </TITLE>

<META http-equiv="REFRESH" content="15; URL=TempChartControl.htm" >

<!-- Refresh every 15 seconds -->

</HEAD>

<!-- Have Frames means no Body -->

<FRAMESET rows="0%,*">

 <FRAME src="Top.htm" >

 <FRAME src="http://www.innovation-

invention.com/Telemetry/TempChart.htm">

</FRAMESET>

</HTML>

http://www.innovation-

Febrile Fits Monitor Appendix D Circuit Diagrams
86

Appendix D Circuit Diagrams

The following figures show the circuit diagrams of the initial hardware setup.

Microsoft Office Visio 2003 was used to draw the circuit diagrams.

1
2
3
4

24
23
22
21

5
6
7
8

20
19
18
17

9
10
11
12

16
15
14
13

To PC
serial port

1
2
3
4

8
7
6
5

Temp.
sensor

DS1620

5V

1kΩ

DC
6V

~12V

470nF
(or

100nF)

LM2940
1 2 3

LM2940
or

7805

22uF
Tantalum

1 kΩ

Power
indicator

5V

Ground

65431 2

(100nF)

Transmitter
TWS-434A

5V

Reset

Figure 33: Initial Circuit Diagram for Child’s Unit

Febrile Fits Monitor Appendix D Circuit Diagrams
87

Figure 34: Initial Circuit Diagram for Parent’s Unit

Febrile Fits Monitor Appendix D Circuit Diagrams
88

The following figures show the circuit diagrams of the final hardware setup.

1
2
3
4

24
23
22
21

5
6
7
8

20
19
18
17

9
10
11
12

16
15
14
13

To PC
serial port

DC
6V

~12V

100nF

LM2940
1 2 3

LM2940
or

7805

22uF
Tantalum

2kΩ

Power
indicator

5V

Ground

5V

R1: 1.5kΩ ±1%

Thermistor
RT

470Ω

5
4
3

2
1

Figure 35: Final Circuit Diagram for Child’s Unit

Febrile Fits Monitor Appendix D Circuit Diagrams
89

1
2
3
4

24
23
22
21

5
6
7
8

20
19
18
17

9
10
11
12

16
15
14
13

To PC
serial port

5V

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

5V

Speaker
470Ω

PB3Down

PB2Up

PB1Set

DC
6V

~12V

470nF
(or

100nF)

LM2940
1 2 3

LM2940
or

7805

22uF
Tantalum

2kΩ

Power
Indicator

(red)

5V

Ground

2kΩ Alarm
LED

(orange)

5V

RX2 Receiver

Figure 36: Final Circuit Diagram for Parent’s Unit

