

Winston W. L. Ho Tony Q. S. Quek Sumei Sun

IEEE VTC 2010 Spring, Taipei

Outline

- **MIMO** Downlink CoMP
- 4 Joint vs Decentralized Precoding
- 4 Problem Statement
- ♣ System Model
- Projected Channel DPC
- 4 Simulations
- 4 Conclusion

MIMO Downlink CoMP

- ↓ Coordinated multi-point transmission/reception (CoMP) is also known as network MIMO and multicell MIMO.
- Base stations cooperate to increase the throughput.
- **4** We discuss the CoMP downlink.

Joint vs Decentralized Precoding

Joint

- Multiple base stations act as a large virtual base station and transmit data to the users.
- Optimal schemes are known.

4 Decentralized

- Each base station is the processor that carries out its localized task.
- Only the data destined for the insidecell users need to be available at the base station.

Joint vs Decentralized Precoding

♣ Joint

- The processor requires the combined downlink CSI from all base stations.
- Co-channel interference helps transmission.

4 Decentralized

- Each base station only requires the downlink CSI from itself.
- Co-channel interference negatively affects transmission.

Problem Statement

- ♣ To find a distributed precoder that reduces the burden on the backhaul for CSI and data exchange.
- ♣ To handle multiple inside-cell and outside-cell users with one or more antennas.
- ♣ To eliminate the effect of inter-cell interference and provide high data rate for the users.

System Model

4 H denotes channel to inside-cell users.

♣ H denotes channel to outside-cell users. ••••

Projected Channel DPC

- The base station projects its signal away from outside-cell users.
 - \mathbf{W} Evaluate the SVD of the outside-cell channel $\mathbf{\overline{H}} = \overline{\mathbf{U}} \mathbf{\overline{V}}^H$
 - lacktriangledown Taking the dominant eigenvectors $oldsymbol{V}_1$
 - lacktriangle Derive the projected channel $\mathbf{H}_{\perp} = \mathbf{H} \left(\mathbf{I} \overline{\mathbf{V}}_{1} \overline{\mathbf{V}}_{1}^{H} \right)$
- Dirty paper coding (DPC) is applied for the inside-cell users.

Projected Channel DPC

- Block diagonal DPC processing
 - e.g. block diagonal geometric mean decomposition (BD-GMD) is applied.

$$\mathbf{P}^H \mathbf{H}_{\perp} \mathbf{Q} = \mathbf{L}$$

$$\mathbf{H} \setminus \mathbf{Q} = \mathbf{H}\mathbf{Q}$$

Simulations

+ Figure 2: Circular Wyner Model with M=4 cells and K users per cell.

Conclusion

- Network MIMO is an attractive technology to tackle interference and increase spectral efficiency
- ♣ Projected Channel DPC is a decentralized precoder for the MIMO downlink CoMP that reduces the burden on the backhaul for CSI and data exchange.
- Our precoder eliminates all outside-cell interference and provides high data rate for the users.

