User Ordering and Subchannel Selection for Power Minimization in MIMO Broadcast Channels using BD-GMD

> Winston Ho and Ying-Chang Liang, Institute for Infocomm Research (I²R), Singapore

Power Minimization

4 Objective:

To minimize the transmit power for the MIMO broadcast channel,

given user rate requirements,

using Dirty Paper Coding.

Cases:

Interference-Balancing (IB).Zero-Forcing (ZF).

Optimal Power Minimization (1)

- Interference-Balancing (IB) Case
 - IUI, noise
 - Theoretical optimum convex optimization
 - Better performance than ZF in low SNR region
 - Higher complexity than ZF case
 - Many iterations
 - Each iter. ↑ computations
 - No. iter. random

Optimal Power Minimization (2)

Zero-Forcing (ZF) Case Lower complexity User ordering and subchannel selection Search over encoding orders and subchannel combinations >Limited predictable complexity Suboptimal method with much reduced complexity >close to IB-optimal power

- Optimal Power Minimization
 Preliminaries: GMD and BD-GMD
- Subchannel Selection
- ZF-based Power Minimization
- Efficient Method
- **L**Simulations
- Conclusion

Preliminaries (1)

Transmission Strategies for Single-User MIMO

- Singular Value Decomposition (SVD)
 H = USV^H
 - Subchannel with different SNRs
- Geometric Mean Decomposition (GMD)[1]
 - $H = PLQ^{H}$
 - L is lower triangular, equal diagonal
 - Subchannels with identical SNRs

[1] Y. Jiang, J. Li and W. W. Hager, "Joint Transceiver Design for MIMO Communications Using Geometric Mean Decomposition,"

IEEE Trans. Signal Processing, vol. 53, no. 10, pp. 3791-3803, Oct. 2005.

BD-GMD

Preliminaries (2)

Block-Diagonal GMD for Multi-User MIMO

S. Lin, W. W. L. Ho, and Y.-C. Liang, "Block Diagonal Geometric Mean Decomposition (BD-GMD) for MIMO Broadcast Channels," *IEEE Trans. Wireless Commun.*, vol. 7, no. 7, pp. 2778-2789, Jul. 2008.

Subchannel Selection

HBlock diagonal geometric mean decomposition with subchannel selection (BD-GMD-SS) Successive GMD Select singular values Reduce transmit power

ZF-based Power Minimization (1)

- #Rate req'm for each user = R_k bps/Hz
 #SNR req'm
- 4# transmit antennas = N_T
- Multiplexing: user k has η_k data subchannels

ZF-based Power Minimization (2)

♣ Optimization problem: minimize Tr(F^HF) subject to AHF = √N₀ Γ^{1/2}B B ∈ 9 , A ∈ / ||A(i,:)|| = 1 for 1 ≤ i ≤ N_D

ZF-based Power Minimization (3)

Solution: BD-GMD-SS: $\mathbf{P}^{H}\mathbf{H}\mathbf{Q} = \mathbf{L}$ let $\mathbf{\Lambda} = \operatorname{diag}(\mathbf{L})$ $\mathbf{\Omega} = \sqrt{N_0}\mathbf{\Gamma}^{1/2}\mathbf{\Lambda}^{-1}$, $\mathbf{F} = \mathbf{Q}\mathbf{\Omega}$, $\mathbf{B} = \mathbf{\Omega}^{-1}\mathbf{\Lambda}^{-1}\mathbf{L}\mathbf{\Omega}$, $\mathbf{A} = \mathbf{P}^{H}$.

Minimum power = $E_s = \text{Tr}(\mathbf{F}^H \mathbf{F}) = \text{Tr}(\mathbf{\Omega}^2)$

$$\mathbf{AHF} = \sqrt{N_0} \mathbf{\Gamma}^{1/2} \mathbf{B}$$

Efficient Method

Best Choice Ordering
 Best of three methods
 Successive selection of users
 Top down manner

Optimum subchannel selection

Simulation Results

BD-GMD

Conclusion

- ZF-based Power Minimization for MIMO Broadcast Channels
- Block-diagonal Geometric Mean Decomposition (BD-GMD)
- Optimal ordering and subchannel selection
- Non-iterative solution
- Power close to IB-optimal

