
1

Optimal Resource Allocation for Multiuser
MIMO-OFDM Systems with User Rate Constraints

Winston W. L. Ho,Student Member, IEEE,and Ying-Chang Liang,Senior Member, IEEE

Abstract—With the proliferation of wireless services, personal
connectivity is fast becoming ubiquitous. As the user population
demands greater multimedia interactivity, data rate requirements
are set to soar. Future wireless systems such as multiple-
input multiple-output orthogonal frequency division multiplex-
ing (MIMO-OFDM) need to cater to not only a burgeoning
subscriber pool, but also to a higher throughput per user.
Furthermore, resource allocation for multiuser MIMO-OFDM
systems is vital in optimizing the subcarrier and power alloca-
tions to improve the overall system performance. Using convex
optimization techniques, this paper proposes an efficient solution
to minimize the total transmit power subject to each user’s data
rate requirement. Through the use of a Lagrangian dual decom-
position, the complexity is reduced from one that is exponential
in the number of subcarriers M to one that is only linear in M .
To keep the complexity low, linear beamforming is incorporated
at both the transmitter and the receiver. Although frequency-
flat fading has been known to plague OFDM resource allocation
systems, a modification termeddual proportional fairnesshandles
flat or partially frequency-selective fading seamlessly. Due to the
non-convexity of the optimization problem, the proposed solution
is not guaranteed to be optimal. However, for realistic number of
subcarriers, the duality gap is practically zero, and the optimal
resource allocation can be evaluated efficiently. Simulation results
show large performance gains over a fixed subcarrier allocation.

Index Terms—MIMO-OFDM, multiuser, resource allocation,
dual decomposition, dual proportional fairness, convex optimiza-
tion, subcarrier selection.

I. I NTRODUCTION

A multiple-input multiple-output (MIMO) wireless link
makes use of multiple antennas at both the transmitter and
the receiver. Compared to a single input single output (SISO)
random channel, a random MIMO channel has a capacity that
grows linearly with the minimum of the number of transmit
and receive antennas [1, 2], without requiring additional power
or frequency spectrum. In orthogonal frequency division mul-
tiplexing (OFDM), a broadband frequency-selective channel is
decoupled into multiple flat fading channels, through efficient
fast fourier transform (FFT) operations. The combination
of these two technologies, termed MIMO-OFDM [3], is a
strong candidate for next generation wireless systems, like 4th
generation mobile communications. With the increase in the
technology savvy population, there is now a huge demand
for rich multimedia interactivity. Commercial cellular systems
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have to cope with not only an increase in the number of users,
but also with an increase in the data rate requirement per user.
MIMO-OFDM addresses these two concerns aptly. Not only
is there an increase in overall throughput, there are also more
degrees of freedom to accommodate a larger number of users.
This is because users can be separated in space as well as
frequency.

In practical scenarios, users may be located at different
distances from the base station (BS), resulting in different
variances for each independent user’s channel matrix. Fur-
thermore, users may have subscribed to plans of different
data rates. Therefore, practical resource allocation schemes
have to take those into consideration. In a cellular system,
users experience interference from the BSs of neighbouring
cells. Consequently, an important question to answer is how
to minimize the transmit power of each individual BS, while
maintaining the rate requirements for the group of users
currently served. This would help to reduce the interference
that each BS produces to neighbouring cells, and as a result
improve the whole cellular system’s performance.

Convex optimization [4, 5] offers iterative methods to solve
several nonlinear communications problems. [10–12] solve the
flat-fading uplink/downlink power minimization given user
target rates, with the help of convex optimization and the
uplink-downlink duality [6–9]. [10] starts with a weighted
sum rate maximization for an initial weight vector and an
initial sum power. The iterations involve an inner loop, where
the weight vector is updated, and an outer loop, where the
power is updated by a one-dimensional bisection search.
The oscillations near the end are used to derive the time-
sharing rate points. [11] solves the sum power minimization
problem for the fading broadcast channel by using a dual
decomposition. For an initial vector of Lagrange multipliers,
the Lagrangian is minimized. Following that, the Lagrange
multipliers are updated iteratively by the ellipsoid method. [12]
obtains the differentiated capacity for an initial sum power.
A bisection search is then used to find the minimum sum
power. For these papers, decision feedback equalization (DFE)
is performed at the BS during the uplink. Equivalently, dirty
paper coding (DPC) is assumed at the BS during the downlink.
Time-sharing between the different decoding/encoding orders
is required when the target rate-tuple lies on the convex hull of
the respective vertices in the capacity region. The time-sharing
scheme can be solved by a linear program [10].

The methods above are referred to as interference-balancing
(IB) because they take noise into account and allow interfer-
ence between users/subchannels. On the other hand, methods
that cancel out all interference between users as well as
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between subchannels are referred to as zero-forcing (ZF)
schemes. Generally, IB techniques have higher complexity
than ZF ones, but may have better performance for the low
SNR region.

For both the ZF and IB classifications, schemes can be
further subdivided into linear and nonlinear schemes. The
methods described earlier are known as nonlinear schemes
because they involve nonlinear processing like DFE at the
receiver or DPC at the transmitter. In MIMO-OFDM, each
subcarrier represents a flat fading MIMO channel. Using
the nonlinear solutions above, each subcarrier may require a
different decoding/encoding order, leading to an undesirable
increase in complexity. While this is optimal in terms of
minimizing the total transmit power, the demands on the
hardware processing capability may far outweigh the benefit
of the lower transmit power.

In contrast, linear schemes make use of only linear matrix
multiplications for the components of the signal processing.
The advantage of linear processing or beamforming is that
the complexity is much reduced, leading to a decrease in
hardware demand. In addition to reducing the complexity of
this multi-carrier system, linear processing tends to be more
robust against channel uncertainty, than nonlinear processing
like DPC. Furthermore, for a flat fading MIMO broadcast
channel, ZF beamforming with time division multiple access
(TDMA) has been shown to achieve a sum rate close to the
optimal DPC scheme when the number of users is large [19].

For the SISO case, optimal orthogonal frequency division
multiple access (OFDMA) downlink resource allocation has
been developed in [16], which does not have the complexity
of different encoding/decoding orders, since there can only
be one user per subcarrier. [14] obtains subcarrier and bit
allocations with a goal of minimizing the overall transmit
power while maintaining a target BER for a multiuser MIMO-
OFDM system. Similar to [16], in [14], there can only be
one user per subcarrier. For each subcarrier, the user that
achieves the maximum SNR is selected for this subcarrier.
[14] and [16] are suitable for frequency-selective fading chan-
nels. Frequency-flat channels, if they occur, may result in an
inability to guarantee user rates because the decision to select
a particular user for one subcarrier would be repeated for all
the subcarriers.

In [17], users are classified according to the spatial sepa-
rability, which is calculated from the correlation between the
users’ spatial signatures. By grouping the users in this manner,
subcarriers can be allocated to the users while ensuring that
the highly correlated users would not use the same subcarriers.
More specifically, the correlation between any 2 users in dif-
ferent groups is set less than a predefined threshold. Therefore,
parallel interference cancellation at the BS during the uplink
is assumed to remove all the interference between the users.

In this paper, an efficient method based on convex optimiza-
tion theory is designed to minimize the total transmit power
for MIMO-OFDM communications, subject to individual user
rate constraints. This strategy requires only linear transmit
and receive processing. Therefore it is applicable to both the
downlink and the uplink. By considering the Lagrangian dual
of the sum power objective function, the problem is broken

down intoM individual subproblems, whereM is the number
of subcarriers. The complexity is thus reduced from one
exponential inM to one linear inM . Given thatM is typically
large for multi-carrier systems, this represents a huge amount
of savings. The supergradient of the dual function is then used
to update the Lagrange multipliers in finite step sizes. The step
sizes are adjusted based on the convergence behaviour in order
to speed up the convergence of the algorithm. Furthermore,
the algorithm is able to adapt to changing channel conditions.
It has been found that methods based on dual decomposition
could possibly suffer from a uniformity among the subcarriers,
resulting in large oscillations within the algorithm. A solution
based on adual proportional fairnessis proposed to tackle
the event of frequency-flat fading. Simulation results show
that with reasonable number of subcarriers, the duality gap is
effectively zero, thereby substantiating the proposed solution.

Section II describes the channel model and the strategy
of linear block diagonalization (LBD) [18] that separates the
users spatially via linear beamforming. The optimal solution to
resource allocation for power minimization is given in Section
III. An efficient solution based on convex optimization is
developed in Section IV. Adjustment of the step size for faster
convergence and adaptation to changing channel conditions is
discussed in Section V. To handle the event of flat fading
channels, a modification based on a dual proportional fairness
is introduced in Section VI. Simulation results are given in
Section VII. Finally, conclusions are drawn in Section VIII.
Notations:

Vectors and matrices are denoted by boldface letters.(·)T

and(·)H denote the transpose and conjugate transpose opera-
tions respectively.E[·] andTr(·) stand for the expectation and
matrix trace operators respectively.|| · ||2 denotes the vector
Euclidean norm, whileIN denotes theN ×N identity matrix.
A = blkd(A1,A2, . . . ,AK) represents the block diagonal
matrix of the form

A =




A1 0 . . . 0
0 A2 . . . 0
...

...
. ..

...
0 0 . . . AK


 . (1)

II. CHANNEL MODEL AND TRANSMISSIONSTRATEGY

A. Channel Model

In this section, a general description of the channel model is
given. Consider a cellular-based MIMO-OFDM system with a
BS communicating withK user terminals viaM subcarriers.
Suppose the BS is equipped withNT antennas and thek-
th user terminal hasnk antennas. DenoteNR =

∑K
k=1 nk

as the total number of receive antennas. Letσk,m indicate the
presence of thek-th user on subcarrierm; σk,m = 1 if present
and 0 if not. Therefore{σk,m} represents the user selection
on each subcarrier. Let the rank of the channel matrix of user
k on subcarrierm be denoted byηk,m, where0 ≤ ηk,m ≤
min(nk, NT ),∀m. The diagram of downlink transmission is
shown in Fig. 1. The baseband input-output relationship is
represented as

yd = Hdxd + nd , (2)
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Fig. 1. Block diagram of MIMO-OFDM downlink.

where xd = [xT
d,1, . . . ,x

T
d,M ]T is the transmit signal vec-

tor, Hd = blkd(Hd,1, . . . ,Hd,M ) is the channel,yd =
[yT

d,1, . . . ,y
T
d,M ]T is the receive signal vector, andnd is

the MNR × 1 noise vector. Assume that the noise is zero-
mean, circularly symmetric complex Gaussian (CSCG) with
E[ndnH

d ] = N0I, andnd is independent ofxd. For them-th
subcarrier, (2) can be interpreted as

yd,m = Hd,mxd,m + nd,m , (3)

where Hd,m = [HT
d,1,m, . . . ,HT

d,K,m]T is the NR × NT

random MIMO channel andyd,m = [yT
d,1,m, . . . ,yT

d,K,m]T

is theNR × 1 receive signal vector on subcarrierm.
For the uplink, the block diagram is shown in Fig. 2, where

the received signal is given by

yu = Huxu + nu , (4)

with Hu = blkd(Hu,1, . . . ,Hu,M ) being the uplink channel
matrix. xu = [xT

u,1, . . . ,x
T
u,M ]T is the transmit signal vector

andnu is theMNT × 1 noise vector. On them-th subcarrier,
we have

yu,m = Hu,mxu,m + nu,m , (5)

wherexu,m = [xT
u,1,m, . . . ,xT

u,K,m]T is theNR × 1 transmit
signal vector,Hu,m is theNT ×NR uplink MIMO channel,
and yu,m is the NT × 1 receive signal vector on subcarrier
m. Similar to the downlink case, the noise vectornu,m is
zero-mean CSCG withE[nu,mnH

u,m] = N0INT
.

B. Equalization using Linear Block Diagonalization

This section describes the transmission scheme for the
MIMO-OFDM channel, using linear transmit and receive
equalization to block diagonalize the channel.

Fig. 2. Block diagram of MIMO-OFDM uplink.

At each transmission slot, the BS decides on the subcarrier
allocation and the transmit preprocessing for the downlink.
When more than 1 user share a certain subcarrier, ZF linear
block diagonalization (LBD) [18] can be used to separate the
users spatially. This creates decoupled channels for all the
users. The user terminals then perform channel estimation and
receive processing, which can be based on ZF equalization.
The user terminals are informed by the BS what transmit
processing to employ for the uplink. The BS need only to
perform ZF linear receive equalization, because all the user
channels are completely decoupled.

Alternatively, if communication is by time division duplex
(TDD), the reciprocity principle can be used at the BS to
estimate the channel. The transmit matrix operations are
identical to the receive matrix operations, greatly simplifying
the communications procedure. Likewise, at the user terminals,
each user can estimate its own channel because there is no
interference between the users. The receive matrix operations
are applied directly for the uplink transmission.

1) Downlink Case: Consider the transmission over one
subcarrier during the downlink. For each user, singular value
decomposition (SVD) is applied to the combined channel
matrix of all the other users. The last few right singular vectors
that correspond to zero singular values give the null space of
this combined matrix. Next, each user’s matrix is multiplied
by the corresponding null space obtained earlier and SVD is
performed on the resultant matrix. These two steps would give
the transmit and receive equalization matrices. The different
users’ MIMO channels become completely decoupled, with
no interference between the users.

When the number of users is large, all these mutual pro-
jections would make each user’s subchannels very weak. The
advantage of multicarrier MIMO communications is that all
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the users do not need to share the same subcarrier. An easy
way to exploit this is to constrain the system such that only 1
user occupies each subcarrier. Consequently, no projections are
required because the other users are not expecting any data on
this subcarrier and would ignore whatever signals they receive.
Due to low complexity, this design would be suitable for low
cost hardware implementation.

When the number of BS antennas is relatively large,
compared to the number of users, the performance may be
improved by allowing more than 1 user to share the same
subcarrier. Next, the algorithm to calculate the transmit and
receive equalization matrices is illustrated for this general case.

Suppose that there areKm users in subcarrierm.
Let the downlink channel on this subcarrier be denoted
by H = [HT

1 , . . . ,HT
Km

]T . For user k, define H̃k =
[HT

1 , . . . ,HT
k−1,H

T
k+1, . . . ,H

T
Km

]T . Perform SVD on each
H̃k:

H̃k = ŨkS̃kṼH
k = ŨkS̃k

[
Ṽ(1)

k Ṽ(0)
k

]H

, (6)

whereŨk andṼk are unitary matrices in which the columns
are the left and right singular vectors of̃Hk respectively.S̃k

is a diagonal matrix, which may be rectangular, containing
the singular values of̃Hk. The columns ofṼ(1)

k correspond
to non-zero singular values whereas the columns ofṼ(0)

k

correspond to the zero singular values ofH̃k. ThereforeṼ(0)
k

is the null space ofH̃k. Each user’s channel after mutual
projections is

Ȟk = HkṼ
(0)
k = ǓkŠkV̌H

k , (7)

where the last equality represents the SVD ofȞk. As a
result, on each subcarrier, for the group of users currently
being served, their channels are completely decoupled and
they observe no interference from one another. The transmit
equalization matrixF is defined as

F = [F1, . . . ,FKm ] (8)

whereFH
k Fk = I, 1 ≤ k ≤ Km. For each user here,

Fk = Ṽ(0)
k V̌k . (9)

The receive equalization matrix for this user is

Wk = Ǔk . (10)

In sections III and IV, the user subcarrier allocation and
the subchannel power loading will be derived. LetP be
the diagonal power allocation matrix on a this subcarrier,
whereP = blkd(P1, . . . ,Pk, . . . ,PKm) andPk is the power
allocation matrix for userk. Depending on where the diagonal
elements ofPk are zero, some spatial subchannels may not
be used. The final input-output relationship for each user on
this subcarrier may be expressed as

zk = WH
k yk

= WH
k (Hkxk + nk)

= WH
k (HkFkP

1/2
k ak + nk)

= ŠkP
1/2
k ak + WH

k nk . (11)

Therefore, the data streams for each user are decoupled:

zk,l = sk,l

√
p̃k,lak,l + ñk,l , (12)

where ak,l is the transmitted data symbol on subchannel
l, sk,l and p̃k,l are the l-th diagonal elements of̌Sk and
Pk respectively,zk,l is the received signal, and̃nk,l is the
zero-mean CSCG noise with varianceN0. Overall, for this
subcarrier, we have

z = WHy

= WH(Hx + n)

= WH(HFP1/2a + n)

= ŠP1/2a + WHn , (13)

where a = [aT
1 , . . . , aT

Km
]T is the transmit data vector in

whichE[aaH ] = I, W = blkd(W1, . . . ,WKm
) is the receive

equalization matrix,̌S = blkd(Š1, . . . , ŠKm
) is the equivalent

channel, andz = [zT
1 , . . . , zT

Km
]T is the equalized signal

vector at the receiver.
2) Uplink Case:The equalization scheme for the uplink can

be derived by considering thedual downlink. For an uplink
channel over one subcarrier,Hu, define the dual downlink
channel as

Hd = HH
u . (14)

The same steps as in the previous subsection can be used to
deriveF andW, by consideringHd asH. However, in this
case,W is the transmit equalization matrix whileF is the
receive equalization matrix. The input-output relationship for
this subcarrier is

zu = FHyu

= FH(Huxu + nu)

= FH(HH
d WP1/2au + nu)

= ŠP1/2au + FHnu , (15)

Again, the data streams of all the users are decoupled, just as
in (12). The same power allocation can be used, giving the
same data rates for all the users, be it the downlink or the
uplink.

III. O PTIMAL SOLUTION FOR POWER M INIMIZATION

In this section, the problem of power minimization given
user rate requirements is formulated mathematically and the
optimal solution is derived. While this is optimal, the com-
plexity is huge because of an exhaustive search over a large
set of possible subcarrier allocations.

The objective is to find the optimal subcarrier allocation
{σk,m} and power allocation{pk,m} that minimize the overall
transmit power subject to satisfying each user’s normalized
data rate requirement̄Rk bits per sec per Hz (bps/Hz).1

1For M subcarriers, each with bandwidthω, the overall rate for userk
is MR̄kω bps.MR̄k bits are transmitted for userk in the duration of one
OFDM symbol i.e. one channel use.
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Mathematically, the optimization can be expressed as

minimize
{σk,m},{pk,m}

M∑
m=1

K∑

k=1

pk,m

subject to
M∑

m=1

rk,m ≥ MR̄k , ∀k

pk,m ≥ 0 , ∀k, m (16)

whererk,m is the rate of userk on subcarrierm and it can
be written as

rk,m =
ηk,m∑

l=1

log2

(
1 +

p̃k,m,ls
2
k,m,l

ΓN0

)
, (17)

wheresk,m,l is thel-th diagonal element of userk’s equivalent
channelŠk,m on subcarrierm as in (12). Therefore{sk,m,l}
is dependent on the user selection{σk,m} on subcarrierm,
whereσk,m is as defined in Section II-A.̃pk,m,l is the power
loading on subchannell for user k on the m-th subcarrier,
and pk,m =

∑ηk,m

l=1 p̃k,m,l. If σk,m = 0, we setpk,m = 0,
sk,m,l = 0∀l, andrk,m = 0. In (17), Γ is the SNR gap which
can be represented as

Γ = − ln(5 BER)
1.5

(18)

for an uncoded M-QAM modulation with a specified BER
[13]. For practical systems that use error-correction coding, the
SNR gap can be much smaller. If the subcarrier assignment
{σk,m} is fixed, the power allocation can be found for each
user separately. If userk is of interest, the problem becomes

minimize
{pk,m}

M∑
m=1

pk,m

subject to
M∑

m=1

rk,m ≥ MR̄k

pk,m ≥ 0 , ∀m
pk,m = 0 , if σk,m = 0 . (19)

Water-filling can be then carried out over userk’s eigen-
channels across all the subcarriers to find the optimal power
and rate allocation:

p̃k,m,l = max

{
µk

ln2
− ΓN0

s2
k,m,l

, 0

}
, (20)

r̃k,m,l = log2

(
max

{
µks2

k,m,l

ln2 ΓN0
, 1

})
, (21)

where µk

ln2 is the water level such that

M∑
m=1

ηk,m∑

l=1

r̃k,m,l = MR̄k . (22)

To illustrate the water-filling,µk

ln2 can be interpreted as the
common water level of the power or water poured over
channels with river beds equal toΓN0

s2
k,m,l

. Starting with the

maximum number of streams,µk

ln2 is evaluated for a decreasing
number of streams until the point where the water level is
above the highest river bed.

In order to obtain the globally optimal solution, an ex-
haustive search is needed over all the subcarrier assignments
{σk,m} to find the minimum transmit sum power. Thus,K
water-filling procedures overMnk singular values have to be
carried out for each of2KM possibilities. Even if a constraint
is imposed such that only 1 user occupies each subcarrier,
there would beKM possibilities to test.

IV. EFFICIENT SOLUTION FOR POWER M INIMIZATION

In this section, an efficient solution to the power minimiza-
tion problem is derived based on a Lagrange dual decompo-
sition. First, let us write the problem of (16) as the following
optimization problem:

minimize
{rk,m}

f(r)

subject to
M∑

m=1

rm ≥ MR̄ , (23)

where r = [rT
1 , . . . , rT

m, . . . , rT
M ]T , in which rm =

[r1,m, . . . , rK,m]T , is the rate allocation to be optimized.f(·)
is aRMK → R function that is not necessarily convex. The
rate requirements are represented by theR̄ = [R̄1, . . . , R̄K ]T

and “≥” denotes a set of elementwise inequalities. Even
though the objective function is not convex, it is still possible
to transform this problem into a convex one, by forming the
Lagrangian dual of the objective function. This is called the
dual method. The original optimization is known as theprimal
problem, while the transformed problem is known as thedual
problem. In the dual method, the Lagrangian of (23) is first
evaluated:

L(r,µ) = f(r) + µT

(
MR̄−

M∑
m=1

rm

)
. (24)

whereµ = [µ1, . . . , µK ]T is the vector of Lagrange multipli-
ers. The dual functiong(µ) is defined as the unconstrained
minimization of the Lagrangian.

g(µ) = min
r
L(r,µ) = L(r?,µ) . (25)

wherer? = arg minr L(r, µ). The dual problem is therefore

maximize
µ

g(µ)

subject to µ ≥ 0 . (26)

The dual function is always concave, independent of the
convexity of f(·). Therefore efficient convex optimization
techniques can be used to maximizeg(µ). If the function
f(·) is convex, it turns out that solving the dual problem is
equivalent to solving the primal problem, and both solutions
are identical [4]. In our optimization of (16), the objective
function is a pointwise minimum of several convex functions.
This is clearly not convex. However, the solution to the dual
problem is a lower bound for the optimal primal objective
function value. The difference between the optimal primal and
dual function values is termed the “duality gap.” It has been
shown that for multicarrier systems with largeM , the duality
gap is negligible [20].
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From the previous section, the Lagrangian of the optimiza-
tion problem (16) is

L1 =
M∑

m=1

K∑

k=1

pk,m +
K∑

k=1

µk

(
MR̄k −

M∑
m=1

rk,m

)
, (27)

whereµk are the Lagrange multipliers as in (24) andrk,m is
given by (17). If theµk are fixed, the user selection can be
done on a per subcarrier basis as follows. Write (27) as

L1 =
M∑

m=1

L2(m) +
K∑

k=1

µkMR̄k , (28)

where

L2(m) =
K∑

k=1

(pk,m − µkrk,m) . (29)

Consequently, the problem is decomposed intoM independent
subproblems. Assume that the user selection{σk,m} has been
fixed. Considering one subcarrier,

L2(m) =
K∑

k=1

ηk∑

l=1

(
p̃k,m,l − µk log2

(
1 +

p̃k,m,ls
2
k,m,l

ΓN0

))
.

(30)

L2(m) can then be minimized for each user separately in order
to calculatẽpk,m,l. By applying the water-filling procedure, the
power allocation and rate for thel-th subchannel of userk can
be found:

p̃k,m,l = max

{
µk

ln2
− ΓN0

s2
k,m,l

, 0

}
, (31)

r̃k,m,l = log2

(
max

{
µks2

k,m,l

ln2 ΓN0
, 1

})
. (32)

Consequently, a search over2K possible user selections
{σk,m} on subcarrierm can be carried out to find the best
user selection that minimizesL2(m).

A constraint of only one user per subcarrier would greatly
simplify the search, since there would only beK possible
selections to choose from. The user that minimizesL2(m) is
selected. IfL2(m) ≥ 0, this user is dropped and eventually no
users are allowed on this subcarrier. This is because a positive
value ofL2(m) does not serve to minimizeL1. Overall, for
M subcarriers, there would only beMK possibilities to test.

In a more general case, more than one user is allowed
per subcarrier. On each subcarrier, once a certain user has
been selected, the algorithm proceeds by finding the minimum
L2(m) for

(
K
2

)
possible pairs of users. If this value ofL2(m)

is more than the value ofL2(m) for a single user, the search
stops here and only one user is selected for this subcarrier.
However, if this value ofL2(m) is lower than that of a single
user, these two users are confirmed to be using the current
subcarrier. The algorithm then proceeds to test all

(
K
3

)
possible

triplets of users. The maximum number of user selections to
examine would be2K . Over all M subcarriers, there would
be M · 2K possibilities to test.

When the number of subcarriersM is large, the duality
gap is negligible [20]. For a certain channel realization, if the

duality gap happens to be zero, the efficient solution offered in
this section coincides exactly with the optimal solution. The
resource allocation would therefore be optimal, resulting in
the least possible power. On the other hand, if the duality gap
is not zero, this efficient solution is near-optimal in terms of
sum power minimization for target rates.

On each subcarrier, a suboptimal search based on the greedy
algorithm can be used to simplify the user selection process
given above. As before,L2(m) is evaluated for each of theK
users and the user that gives the minimumL2(m) is selected.
Next, L2(m) is calculated for the case where one of the
remaining K − 1 users is added to the set. The user that
gives the minimum value ofL2(m) is selected. If this value
of L2(m) is higher than theL2(m) found previously for a
single user, this second user is dropped and eventually only
one user would occupy this subcarrier.

However, if the currentL2(m) value is lower than the pre-
viousL2(m) for a single user, these two users are confirmed
to use the current subcarrier. The algorithm then proceeds to
test if a third user is able to use this subcarrier and so on.

Finally, to complete this power minimization solution, the
optimal Lagrange multipliersµ that maximize the dual func-
tion g(µ) need to be found.g(µ) can be maximized by
updatingµ along some search direction, all components at
a time. The concavity ofg(µ) guarantees that the maximum
can be found by a gradient-based search. Althoughg(µ) is
concave, it may not be differentiable at all points, so a gradient
may not always exist. In spite of this, it is still possible to
obtain a search direction by finding a supergradient [21], which
is a generalization of a gradient. A supergradient at a pointµ̂
is a vectord̄ that satisfies

g(µ̃) ≤ g(µ̂) + d̄T (µ̃− µ̂) . (33)

for every µ̃ 6= µ.

Proposition 1: For the optimization problem (16) with a
dual function valueg(µ̂) = L(r?, µ̂) at µ̂, where
r? = arg minr L(r, µ̂), a valid supergradient at the pointµ̂ is
given by

d̄ = MR̄−
M∑

m=1

r?
m . (34)
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Proof:

g(µ̃) = min
r
L(r, µ̃)

= min
r

M∑
m=1

fm(rm) + µ̃T

(
MR̄−

M∑
m=1

rm

)

≤
M∑

m=1

fm(r?
m) + µ̃T

(
MR̄−

M∑
m=1

r?
m

)

=
M∑

m=1

fm(r?
m) + µ̂T

(
MR̄−

M∑
m=1

r?
m

)

+ (µ̃− µ̂)T

(
MR̄−

M∑
m=1

r?
m

)

= g(µ̂) +

(
MR̄−

M∑
m=1

r?
m

)T

(µ̃− µ̂) , (35)

thereby satisfying the supergradient definition (33).
A supergradient can be represented as a supporting hyperplane
defined by the vector(−d̄, 1) that touches the graph ofg(µ) at
the pointµ̂ such that the graphg(µ) lies below this hyperplane
for all µ.

In practice, a scaled version of the supergradient,d =
[d1, . . . , dK ]T = d̄

M , can be used, where

dk = R̄k − 1
M

M∑
m=1

rk,m . (36)

Therefore, starting from an initial value, the Lagrange mul-
tipliers are updated in the positive supergradient direction in
order to maximize the dual function.

µk(τ + 1) = max {µk(τ) + δ dk , 0} , (37)

whereτ represents the iteration number andδ is a small step
size.µk can be interpreted as the reward for userk to increase
its rate. The direction of (37) suggests that if the rate of
user k falls below its target rate, its rate rewardµk should
be increased. On the other hand, if userk exceeds its rate
requirement,µk should be decreased. Furthermore, the rate
reward should not fall below zero. Note that for minimization
of a convex function, the corresponding generalization of the
gradient is the subgradient, in which case, the update is in the
negative subgradient direction.

During the optimization process, the dual rates for the users,

rk =
M∑

m=1

rk,m , (38)

gradually approach the rate requirementsMR̄k. However, at
any point in time, the current subcarrier selections{σk,m}
can be captured to solve for the optimal minimum power
solution given target rates. As the optimization proceeds,
this power value for guaranteed rates will tend to decrease
and approach the dual functionL1. Unlike algorithms such
as steepest-descent, the dual function is not guaranteed to
increase monotonically with each iteration. Therefore, the
algorithm keeps track of the the subcarrier selection{σk,m}
that provides the minimum sum power over all the previous
iterations.

V. A DAPTATION FOR EFFICIENT SOLUTION

The previous section has shown how efficient power min-
imization can be done using convex optimization techniques.
For the Lagrange multiplier update, while any initial value of
µ can be used, it would be better to start with an estimate
of µ to shorten the convergence time. Furthermore, a good
value of the step sizeδ would also improve the convergence.
Too small a step size would result in slow convergence while
too large a step size results in low precision. In this section,
algorithms are provided to estimate an initial value ofµ and
to update the step size adaptively for faster convergence.

An initial value of µ can be found if the subcarrier allo-
cation is fixed cyclicly. Let userk take subcarriersqK + k,
q = 0, 1, 2, ... . ThenL1 can be minimized by considering
each user separately.

L1 =
K∑

k=1

L3(k) , where (39)

L3(k) =
M∑

m=1

pk,m + µk

(
MR̄k −

M∑
m=1

rk,m

)

=
M∑

m=1

ηk,m∑

l=1

p̃k,m,l + µk

(
MR̄k −

M∑
m=1

ηk,m∑

l=1

r̃k,m,l

)
.

(40)

Water-filling can be applied to calculate the power allocation:

p̃k,m,l = max

{
µk

ln2
− ΓN0

s2
k,m,l

, 0

}
, (41)

r̃k,m,l = log2

(
max

{
µks2

k,m,l

ln2 ΓN0
, 1

})
, (42)

where µk

ln2 is the water level such that

M∑
m=1

ηk,m∑

l=1

r̃k,m,l = MR̄k . (43)

Let these values ofµk be the initial valuesµk(1). The initial
step size can be chosen as

δ(1) = ξ1

∑K
k=1 µk(1)∑K

k=1 R̄k

. (44)

whereξ1 is a positive constant. The step size is adjusted adap-
tively as the algorithm proceeds, based on the performance of
the convergence. Before going into the adaptation algorithm,
thresholds are set for the maximum and minimum step size.

δmax = ξmax δ(1) , (45)

δmin = ξmin δ(1) . (46)

where the constants are such thatξmax > 1 and0 < ξmin < 1.
When the dual rates for all the users are observed to be moving
in one direction, the step sizeδ is increased:

δ(τ + 1) = δ(τ)× ξ2 , (47)

where the constantξ2 > 1, or else if a user’s dual rate is
oscillating, the step sizeδ is decreased:

δ(τ + 1) = δ(τ) / ξ3 , (48)
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where the constantξ3 > 1. The conditions for these two
actions can be defined mathematically. When

[dk(τ − 1) > 0 and dk(τ) > 0]
or [dk(τ − 1) < 0 and dk(τ) < 0] (49)

for all the users, the step size is increased. Else, when



rk(τ)− rk(τ − 1) < 0 and
rk(τ − 1)− rk(τ − 2) > 0
for at least one user


 ,

or




rk(τ)− rk(τ − 1) > 0 and
rk(τ − 1)− rk(τ − 2) < 0
for at least one user


 , (50)

the step size is decreased. If these two conditions are not
satisfied, the step size remains as it is.

While any values of the parametersξ1, ξmax, ξmin, ξ2, and
ξ3 could work theoretically, specific values may be chosen to
speed up the convergence. A suggested combination of the
parameters isξ1 = 0.1, ξmax = 5, ξmin = 0.1, ξ2 = 1.1,
andξ3 = 2. The rationale for choosing these is as follows. A
large initial value ofξ1 would result in large oscillations in
the beginning, which would tend to stabilize as the step size is
reduced. It is found that the given value ofξ1 would also result
in a fast convergence except without large initial oscillations.
In the initial stage of the algorithm, the dual rates are relatively
far from the rate requirements and would approach the rate
requirements without oscillations. This means that it makes
sense to increase the step size to speed up the convergence.
Once the dual rates are close to the rate requirements, they
tend to oscillate around the rate requirements. Therefore
the step size is reduced to increase the precision. However,
oscillations generally do not eventually disappear in methods
based on the supergradient, so a lower limitξmin is set on
the step size. In the trivial case of only one user, there are no
oscillations during convergence. To prevent the step size from
increasing without bound, an upper limitξmax is set. As for
the step size adaptation, a small value ofξ2 ensures that the
algorithm would not suddenly go into large oscillations, and if
oscillations do occur, a large value ofξ3 allows the oscillations
to be brought down quickly. These benefits have to be traded
off with the advantage of a large step size.

It is interesting to see how well this adaptive method based
on the supergradient can perform. In the following, we will
investigate how close the algorithm can get to the maximum
of the dual function,g (µ?). When the Lagrange multipliers
µ approach the optimal valueµ?, the dual ratesr tend to
hover about the target ratesMR̄, resulting in oscillations.
It is therefore expected that the step size would be close
to the minimum thresholdδmin due to the adaptation above.
Furthermore, the Euclidean distance betweenr/M andR̄, or
equivalently the supergradient norm‖d(τ)‖2, would normally
be small for a large iteration numberτ .

Theorem 2:Assume that‖d(τ)‖2 < d1, ∀τ > τ1 and
δ(τ) < δ1,∀τ > τ2 for some positive real numbersd1

and δ1, and some positive integersτ1 and τ2. Also, assume
δ(τ) ≥ δmin, ∀τ . Denote the maximum dual function value
over all the previous iterations asg

(
µ

(τ)
best

)
. For anyε > 0,

it can be shown that∃ τ3 such that

g (µ?)− g
(
µ

(τ)
best

)
<

Mδ2
1d2

1

2δmin
+ ε , ∀τ > τ3 (51)

Proof:

‖µ(τ+1) − µ?‖22
= ‖µ(τ) − µ?‖22

+ 2δ(τ)d(τ)T
(
µ(τ) − µ?

)
+ δ(τ)2‖d(τ)‖22 (52)

≤ ‖µ(τ) − µ?‖22
+

2
M

δ(τ)
(
g

(
µ(τ)

)
− g (µ?)

)
+ δ(τ)2‖d(τ)‖22 , (53)

from the definition of the supergradient. Due to recursion, we
have

‖µ(τ+1) − µ?‖22
≤ ‖µ(1) − µ?‖22 −

2
M

τ∑
t=1

δ(t)
(
g (µ?)− g

(
µ(t)

))

+
τ∑

t=1

δ(t)2‖d(t)‖22 . (54)

Let β = ‖µ(1) − µ?‖2. Then

0 ≤ β2 − 2
M

τ∑
t=1

δ(t)
(
g (µ?)− g

(
µ(t)

))

+
τ∑

t=1

δ(t)2‖d(t)‖22 . (55)

Sinceg (µ?)− g
(
µ

(t)
best

)
≤ g (µ?)− g

(
µ(t)

)
,

2
M

τ∑
t=1

δ(t)
(
g (µ?)− g

(
µ

(t)
best

))
≤ β2 +

τ∑
t=1

δ(t)2‖d(t)‖22 ,

(56)
(
g (µ?)− g

(
µ

(τ)
best

)) 2τδmin

M
≤ β2 +

τ∑
t=1

δ(t)2‖d(t)‖22 .

(57)

Denoteτ4 = max {τ1, τ2} and defineτ3 as

τ3 =
⌈
max

{
Mβ2

δminε
,

M
∑τ4

t=1 δ(t)2‖d(t)‖22
δminε

}⌉
. (58)

Then

g (µ?)− g
(
µ

(τ)
best

)

≤ Mβ2

2τδmin
+

M
∑τ4

t=1 δ(t)2‖d(t)‖22
2τδmin

+
M

∑τ
t=τ4+1 δ(t)2‖d(t)‖22

2τδmin
(59)

≤ ε

2
+

ε

2
+

Mτδ2
1d2

1

2τδmin
, ∀τ > τ3 (60)

=
Mδ2

1d2
1

2δmin
+ ε , ∀τ > τ3 . (61)

With the mentioned adaptations in place, the optimization al-
gorithm in the previous section can be applied for time-varying
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channels without a need to re-initializeµ. This is because the
relative channel strengths of different users would not tend
to change drastically.µk, which represents the rate reward
for user k, would update to track the channel conditions.
Similarly, µk adapts to track userk’s rate requirements. When
there is a change in the channel or the rate requirements, the
thresholdsδmax andδmin are recalculated and the last known
best subcarrier allocation is reset.µ andδ are not re-initialized.
It is suggested that the algorithm be run for a certain number of
iterations before the actual usage of the subcarrier allocation,
because it may take a few iterations for the sum power to fall,
below that of a fixed subcarrier allocation for example.

VI. D UAL PROPORTIONALFAIRNESS

The optimization algorithm in Section IV is immediately
applicable to harsh wireless channels. As the MIMO channel
is frequency-selective in this case, the user selection on
each subcarrier is optimized to provide the minimum overall
transmit power. However, a problem arises for frequency-
flat fading channels, if they ever occur. In a perfectly flat
fading channel, user selection on one subcarrier is repeated
for all the subcarriers. When this happens, only one or a few
of the users are allocated subcarriers at any one time. This
has serious consequences for the algorithm. The subcarrier
allocation {σk,m} given by the optimization is unable to
guarantee all the users’ rate requirements.

In this section, a solution based on convex optimization
theory is developed that can tackle the event of frequency-
flat fading. This flat fading management is based on a concept
that will be calleddual proportional fairness. This is inspired
by the principle of proportional fairness (PF) [22] in which
there is a certain randomness to be exploited. While in PF,
the nature of the fluctuating channel is used to design the
time schedules, in dual PF, the nature of the fluctuating dual
rates is utilized to design the subcarrier allocation.

A. Principle of Dual Proportional Fairness

In the dual method of convex optimization, for example in
power minimization, the Lagrange multipliersµ represent a
tangent plane in a graph of power versus user rates. In this
graph, there are several power surfaces, each representing a
different subcarrier allocation. The pointwise minimum of all
these power surfaces represent the minimum sum power for
any given tuple of user rate requirements. When the number
of subcarriers is large, there are more power surfaces corre-
sponding to various subcarrier allocations and the pointwise
minimum of these power surfaces tend to assume a convex
shape. During the optimization process, the tangent plane is
in contact with this minimum surface. The coordinates at this
contact point give the current dual rates for all the users. As
the Lagrange multipliers get updated, the tangent plane adjusts
and the point of contact shifts such that the dual rates approach
the users’ target rates. Convergence occurs when the dual rates
hit the target rates and the minimum sum power is achieved.

Frequency-flat fading channels pose a problem because the
points where the power surfaces can touch the tangent plane
are collinear. For now, assume that only one user occupies each

subcarrier. Consider the case of 2 users. In simulations, it is
impossible for the tangent plane to touch the centre power
surface, corresponding to a subcarrier allocation of 50% to
user 1 and 50% to user 2, without touching the other power
surfaces. As a result, the algorithm oscillates between giving
all the subcarriers to user 1 or all to user 2. Consequently,
each user’s rate swings between zero and a value larger than
its rate requirement.

Based on this understanding, a flat fading management
based ondual proportional fairnessis proposed. In a flat
fading scenario, the power allocations and rates for userk
on all the subcarriers are identical:

pk,m = p̂k , ∀m (62)

rk,m = r̂k , ∀m (63)

pk = Mkp̂k (64)

rk = Mk r̂k , (65)

whereMk is the number of subcarriers allocated to userk and∑K
k=1 Mk = M . Consider the case of two users. The possible

coordinates given by the optimization algorithm are

(Mr̂1 , 0 , Mp̂1) (66)

(0 , Mr̂2 , Mp̂2) . (67)

Another coordinate, not given by the original optimization, is
also possible:

(M1r̂1 , M2r̂2 , M1p̂1 + M2p̂2) . (68)

It can be seen that these three coordinates are collinear. This
concept can be extended to more than 2 users. The trick is now
to find the right combination of{Mk} that minimizes the sum
power. This can be found in the following three steps:

1. Identify the flat fading users.
2. Identify the flat fading groups.
3. Distribute the subcarriers proportionally for each fading

group.

B. Algorithm for Flat Fading Management

1) Identify the flat fading users:Flat fading users are
identified as users with rates that oscillate largely or drop to
zero:

{ [ rk > 1.2 MR̄k at least once
and rk < 0.8 MR̄k at least once ]

or rk = 0 at least once } (69)

in the current and previous 9 iterations. Assume there areKff

such users.
2) Identify the flat fading groups:For each flat fading user,

look back to see when he had received a dual rate higher than
his rate requirement. (If he had not, the flat fading management
cannot be done right now.) Find out the minimum number of
subcarriers userk needs to just fulfill his rate requirement. Let
this beM̄k.

Next, consider all users pairwise. Take user 1 and user 2
for example. Find out where the subcarriers allocated to user
1, Σ1, overlaps with the subcarriers of user 2,Σ2. If they do
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overlap, users 1 and 2 are in the same groupGv. The union of
subcarriers is taken as the flat fading subcarriers of this group,
ΣGv

. Continue this process for allKff flat fading users. Users
that are not interlinked in this manner are placed in separate
flat fading groups. Assume there areKv users in each fading
groupGv.

3) Distribute the subcarriers proportionally for each fading
group: Let there beM̃v flat fading subcarriers inGv. First
assume the special case of flat fading over all the subcarriers.
Users are allocated subcarriers cyclically until userk gets a
maximum of

round

[
M̄k∑

k∈Gv
M̄k

M̃v

]
(70)

subcarriers. To make sure all the subcarriers get allocated, the
last user can get all the remaining subcarriers.

An additional modification to (70) allows the algorithm to
handle the most general case of partially frequency-selective
channels. Take for example the case of two users. In the
graph of power versus user rates, only a subset of subcarrier
allocations result in collinear points of contact with the tangent
plane. This time, oscillations do occur but they are not
between zero and very high rates. Instead, each user’s dual
rate oscillates above and below its rate requirement while its
dual rate does not drop to zero. Practically, taking the current
subcarrier allocation{σk,m} still allows the user rates to be
guaranteed, but this is at an expense of higher transmit power
that also oscillates largely. In the following, a modification
to (70) is developed that allows smooth convergence for the
general case of partially frequency-selective channels.

For each user, find the subcarriers that were allocated to
this user for the current and previous 9 iterations. Let there
be Mk,min such subcarriers. Let̃ΣGv be the subcarriers of
group Gv with the subcarriers corresponding toMk,min of

all flat fading users removed. Let there bẽ̃Mv flat fading
subcarriers inΣ̃Gv . These subcarriers are distributed in a
similar manner as in the previous section. All flat fading users
get allocated their respectiveMk,min subcarriers. The initial
estimated number of subcarriers each flat fading user would
get from Σ̃Gv is

¯̄Mk = max
{
M̄k −Mk,min , 0

}
. (71)

Users are allocated subcarriers cyclically until userk gets a
maximum of

round

[
¯̄Mk∑

k∈Gv

¯̄Mk

˜̃Mv

]
(72)

subcarriers. Again, to handle any rounding errors, the last user
is allocated all the remaining subcarriers. Subcarriers that are
not affected by the flat fading management are assigned the
same subcarriers as given by the original solution without
any flat fading management. For the purpose of adaptation,
when the channel or rate requirements change, this algorithm
is restarted. As in Section V,µ andδ are not re-initialized.
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Fig. 3. Typical convergence behaviour of the efficient algorithm applied to
a 3× [3, 3, 3] MIMO system withM = 64 subcarriers.

VII. S IMULATION RESULTS

This section first shows the convergence behaviour of the
proposed algorithm for certain typical scenarios. Following
that, the performance of the efficient subcarrier allocation ver-
sus a fixed subcarrier allocation is examined. Other heuristic
algorithms are also included for comparison.

Unless otherwise stated, the setup is a3 × [3, 3, 3] MIMO
system, where the base station has 3 antennas and there are 3
user terminals with 3 antennas each, and the rate requirement
is R̄k = 3 bps/Hz, ∀k, with an SNR gap of 3 dB. The number
of subcarriers isM = 64. It is assumed that each subcarrier is
occupied by at most one user only. The channel is frequency-
selective with 17 taps and has a uniform power delay profile.
The algorithm in Section VI-B is used in all the simulations.
Step 1 involves an automatic identification of flat fading users.
If there are flat fading users detected, steps 2 and 3 are then
employed for flat fading management. For the graphs, the SNR

is defined as
PM

m=1
PK

k=1 pk,m

MN0
= Es

MN0
, where total transmitted

signal energy is divided by total noise energy. Therefore the
dual function is also scaled by 1

MN0
for comparison.

Fig. 3 illustrates the typical convergence behaviour for these
default settings. As can be seen, the sum power required for the
efficient subcarrier allocation quickly drops to a near-optimal
value, in just 2 iterations for this example. Note that this sum
power is forguaranteedrates, as shown by the ‘+’ symbols
in the second subgraph. The dual function, on the other hand,
corresponds to the dual rates denoted by the lines in the second
subgraph. The power for the efficient allocation approaches the
dual function value, showing that the duality gap is almost
zero.

To see the concept of dual proportional fairness at work,
consider a partially frequency-selective fading channel, with
flat fading over 20 out of 64 subcarriers. As expected, the
dual rates in Fig. 4 fluctuate over a wide range, suggesting that
the sum power would be far from optimal. However, with the
flat fading management, the algorithm easily obtains a near-
optimal sum power in only 11 iterations. This is because the
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Fig. 4. Sample convergence for a partially frequency-selective channel, with
flat fading over subcarriers 21 to 40.
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Fig. 5. Convergence behaviour for a weakly frequency-selective channel.

nature of the fluctuating dual rates are used to balance the
subcarrier assignment between the users.

Fig. 5 shows the convergence behaviour of the algorithm
applied to a channel with a power delay profile with only 2
taps: 0.999 and 0.001. This is an example of a channel with
almost flat fading. Again, the dual rates fluctuate wildly, and
the flat fading management is automatically started. Without
flat fading management, it is often impossible to guarantee
user rates because at least one user is not allocated any
subcarriers, as can be seen by the zero dual rates. However,
the proposed efficient allocation is able to attain a satisfactory
sum power in just 4 iterations. The vertical lines in the first few
iterations represent the instances where the proposed algorithm
cannot give the solution as it is still evaluating the subcarrier
allocation based on dual proportional fairness.

In the absence of prior channel knowledge, an equal number
of subcarriers should be allocated to each user in a fixed
scheme. To obtain some frequency diversity, a distributed
cyclic subcarrier allocation is chosen due to its robustness
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Fig. 6. Required total transmit power for various data rate requirements.

to frequency-selective fading. In this fixed allocation scheme,
user k takes subcarriersqK + k, q = 0, 1, 2, ... . Another
scheme, the “amplitude-craving greedy” (ACG) algorithm of
[15] allocates subcarriers intelligently based on users’ rate
requirements as well as channel strengths, for SISO-OFDM.
In order to extend this heuristic algorithm to the MIMO-
OFDM case, we modify the algorithm by substituting the
SISO channel strength of [15] with the mean of the squared
absolute values of the MIMO channel matrix elements i.e.
c̃k,m = Tr(HH

k,mHk,m)

NT nk
. This will be referred to as “ACG2” in

the graphs.
A simple allocation scheme takes the form of localized

transmission, where a block of consecutive subcarriers is
allocated to each user. To achieve some multiuser diversity,
the assignment is adapted based on the channel conditions
of the different users. The first̂M =

⌊
M
K

⌋
subcarriers are

given to the user with the highest average channel strength

c̄k,1 =
PM̂

m=1 c̃k,m

M̂
. The nextM̂ subcarriers are allocated to one

of the remaining users with the highest channel strength, and
so on. Finally, the last user gets all the remaining subcarriers.
This is labelled “Localized TX” in the graphs.

The graphs include the “Lower bound” i.e.g(µ)
MN0

for the
solution obtained with optimal resource allocation, based on
the fact that the value of the dual functiong(µ) from (25)
is always a lower bound to the minimum transmit power∑M

m=1

∑K
k=1 pk,m. Therefore, the solution Es

MN0
achieved

with optimal resource allocation is upper and lower bounded
by the proposed “Effic. alloc.” and “Lower bound” respec-
tively. If these two bounds coincide, the duality gap is zero
and the proposed efficient allocation is also optimal.

In Fig. 6, the transmit power is plotted against the rate
requirementρ, where the rate requirement vector is̄Rk =
ρ bps/Hz,∀k. As expected, the sum power increases with
the rate requirements while the efficient allocation performs
uniformly better than the fixed allocation. At a common rate
requirement of 4 bps/Hz for each user, the gain of the efficient
subcarrier allocation over a fixed allocation is 1.4 dB.

Fig. 7 shows the graph of BER requirement versus the sum
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Fig. 7. BER versus sum power for the different subcarrier allocation schemes.
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Fig. 8. Graph of sum power versus number of taps in power delay profile,
showing the effect of channel frequency selectivity.

power. An uncoded M-QAM modulation is assumed in this
case. At a BERs of10−3 to 10−5, the SNR gain appears
relatively constant at 1.2 dB. This is due to the similar effect of
the SNR gap on both the efficient and fixed allocation schemes.

The effect of channel frequency selectivity is tested in
Fig. 8. The number of taps is varied from 1 to 15. The gain
of the efficient subcarrier allocation grows as the channel
becomes more frequency-selective. This is because a fixed
subcarrier allocation would not be able to adapt to take
advantage of the diverse channel conditions. With a flat fading
channel, the gain is rather small, about 0.2 dB. This can be
explained by the fact that with similar rate requirements and
similar channel strengths among the users, a fixed allocation of
subcarriers would serve just as well to distribute the subcarriers
equally for all the users in a flat fading scenario.

Fig. 9 shows the effect of the number of antennas. The
setup here is̄n × [n̄, n̄, n̄], where n̄ is varied from 1 to 4.
As the number of antennas increase, the sum power required
decreases, for the same target rates. This graph clearly shows

1 1.5 2 2.5 3 3.5 4
5

10

15

20

25

30

35

No. of antennas

E
s/(

M
N

0) 
(d

B
)

 

 

Lower bound
Effic. alloc.
Fixed alloc.
Localized TX
ACG2

Fig. 9. Transmit power versus number of antennasn̄, for a n̄ × [n̄, n̄, n̄]
MIMO setup.
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Fig. 10. Sum power for 3, 4, and 5 users in the system.

the advantage of MIMO communications over SISO commu-
nications. Even by just increasing the number of antennasn̄
from 1 to 2, the sum power can be decreased by over 10 dB.

Fig. 10 plots the performance with different number of
users. Values ofK range from 3 to 5. As the number of
users increases, the sum power increases due to a higher sum
rate requirement. It can be seen that the gain over a fixed
subcarrier allocation also increases. This is because there is
greater potential to exploit the multiuser diversity as there are
more users introduced into the system. For example, with 5
users, the gain is 2 dB, compared to 1.2 dB with only 3 users.

For the performance comparisons so far, localized TX has a
lower sum power than the fixed allocation. This is because by
selecting the user with the highest channel strength for each
block of subcarriers, some multiuser diversity is exploited.
The ACG2 shows a further improvement from localized TX
because both the number and positions of the subcarriers are
adapted for each user.

In a general setting, users have differentiated rate require-
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Fig. 11. Transmit power for differentiated rate requirements given byR̄ =
[3, 3−∆ρ, 3 + ∆ρ]T bps/Hz, with channel strengthsc = [0.5, 1.5, 1].

ments if they subscribe to services of different data rates.
Additionally, for practical scenarios, user terminals may be
placed at varying distances from the base station. This effect is
represented byc = [c1, c2, c3], where the variance of the chan-
nel matrix elements are scaled byc1, c2, andc3 respectively
for users 1, 2, and 3. Fig. 11 plots sum power versus∆ρ, where
the target rate vector is̄R = [3, 3 − ∆ρ, 3 + ∆ρ]T bps/Hz,
and the channel strengths arec = [0.5, 1.5, 1]. When∆ρ = 2,
the gain of the proposed allocation is large, over 4 dB.
This because the fast adaptive subcarrier allocation is able to
optimize the number and positions of subcarriers for each user.
This time, the localized TX does not perform better than the
fixed scheme because the large difference in channel strengths
result in the users being selected in a fixed pattern. However,
the ACG2 is still able to provide a low sum power because the
number of subcarriers each user gets is decided by the users’
target rates.

In Fig. 12, the channel strengths are given byc =
[1 − ∆c, 1 + ∆c, 1], while the rate requirements arēR =
[3, 2, 4]T bps/Hz. The transmit power is plotted against the
variation in channel strength∆c. When ∆c = 0.9, the gain
over a fixed allocation is as large as 3 dB. Again, this is
because under the optimal scheme, more subcarriers would
be allocated to the user with the weaker channel in order to
minimize the total transmit power, whereas the fixed allocation
is not able to compensate for the different channel strengths.
Fig. 13 examines the sum power as the number of subcarriers
M increases. It can be seen that even with only 16 subcarriers,
the duality gap is negligible. WhenM = 128, the duality gap
becomes zero, and the proposed efficient algorithm is optimal.

In all these simulations, it can be seen that the efficient
subcarrier allocation yields a large gain over a fixed sub-
carrier allocation. The gain tends to increase with a more
frequency-selective channel or a greater number of users. The
gains are largest for practical scenarios where there can be
varied channel strengths or differentiated rate requirements.
In general, the localized TX performs better than the fixed
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Fig. 12. Effect of different channel strengths among the users, wherec =
[1−∆c, 1 + ∆c, 1], with R̄ = [3, 2, 4]T bps/Hz.
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Fig. 13. Performance for different numbers of subcarriersM = 2φ, where
number of taps=M/4+1,̄R = [3, 2, 4]T bps/Hz, andc = [0.5, 1.5, 1].

allocation, while the ACG2, in turn, performs better than
the localized TX. Finally, the proposed efficient allocation
consistently outperforms all the other schemes.

VIII. C ONCLUSION

High data rate communication is one of the key benefits
of MIMO-OFDM. In order to utilize the system resources
efficiently, fast and adaptive optimization algorithms are re-
quired. This paper has addressed the issue of optimal re-
source allocation to minimize the total transmit power while
satisfying users’ target rates. An efficient and adaptive algo-
rithm, based on convex optimization theory, is proposed to
obtain the subcarrier, power, and rate allocations that exploit
the diversities of the system. To provide a low complexity
implementation, only linear beamforming is carried out at
the transmitter and the receiver. Therefore, this solution is
immediately applicable to both the downlink and the uplink.
Adaptation for this efficient resource allocation allows for fast
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power convergence. When the duality gap for a particular
channel realization is zero, this efficient solution coincides
with the optimal minimum power solution, else this solution
is near-optimal. To handle the event of a flat fading channel,
a technique termeddual proportional fairnessis employed
to give good performance even in this scenario. Simulation
results show a large performance improvement over a fixed
subcarrier allocation.
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