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Abstract—In a downlink system using multiple-input multiple-
output orthogonal frequency division multiplexing (MIMO-
OFDM), the subcarrier and power allocations can be optimized
to minimize the overall transmit power given user target rates.
If done efficiently, this resource allocation helps to reduce the
interference ingress to neighbouring cells and limits the power
consumption at the base station. The optimal solution can be
found with a complexity ofO(KM ) for a system withK users and
M subcarriers. This paper proposes an efficient method using a
dual decomposition that has a lower complexity of onlyO(MK).
Linear beamforming is assumed at both the transmitter and the
receiver ends. Frequency-flat fading may adversely affect OFDM
resource allocation if using a dual decomposition based approach.
Flat fading management is thus proposed by using a certaindual
proportional fairness, that handles all fading scenarios, including
flat or partially frequency-selective fading. Simulations show fast
convergence of the algorithm, quickly approaching the optimal
solution.

I. I NTRODUCTION

In cellular systems, proper resource allocation for multiple-
input multiple-output orthogonal frequency division multiplex-
ing (MIMO-OFDM) [1] allows more users to be supported at
any given time and provides higher data rates per user. Many
communication problems can be solved by efficient convex
optimization techniques [2, 3]. For example, [4–6] solve the
flat fading MIMO downlink power minimization, with the
help of the uplink-downlink duality [7–10]. Dirty paper coding
(DPC) is assumed at the base station (BS) during the downlink.
Time-sharing between the different decoding orders is required
when the target rate-tuple lies on the convex hull of the
respective vertices in the capacity region. The time-sharing
scheme can be found by a linear program [4].

If directly applying the above nonlinear methods to the
MIMO-OFDM downlink, each subcarrier requires a different
encoding order. While these solutions are optimal in minimiz-
ing the sum transmit power, the drawback is that hardware
complexity is raised. As an alternative, this paper considers
linear processing. For a flat fading MIMO broadcast channel,
zero-forcing (ZF) beamforming with time division multiple
access (TDMA) has been shown to achieve a sum rate close
to the optimal DPC scheme when the number of users is large
[14].

[12] obtains subcarrier and bit allocations with a goal
of minimizing the overall transmit power while maintaining
a target BER for a multiuser MIMO-OFDM system. For
each subcarrier, the user that achieves the maximum SNR
is selected. For the SISO case, an efficient OFDM downlink

resource allocation has been developed in [13], which also
does not have the complexity of different encoding orders,
since there is only one user per subcarrier. Thanks to a dual
decomposition approach, user selection for a subcarrier is
only decided by a metric dependent on that subcarrier alone,
vastly reducing the complexity. [12] and [13] are excellent
for frequency-selective fading OFDM channels. Unfortunately,
frequency-flat OFDM channels, if they occur, would result in
an inability to guarantee user rates because the decision to
select a particular user for one subcarrier would be repeated
for all the subcarriers.

In this paper, an efficient method is designed to minimize
the total transmit power for the MIMO-OFDM downlink,
subject to individual user rate constraints, requiring only
linear transmit and receive processing. By considering the
Lagrangian of the sum power objective function and applying
a dual decomposition, the problem is broken down intoM
individual subproblems, whereM is the number of subcarriers.
The complexity is thus reduced from one exponential inM
to one linear inM . Given thatM is typically large for multi-
carrier systems, this represents a huge complexity reduction.
The supergradient of the dual function is used to update the
Lagrange multipliers. As mentioned earlier, methods based on
dual decomposition could possibly suffer from a uniformity
among the subcarriers, resulting in large oscillations within the
algorithm. A solution based on adual proportional fairnessis
proposed to handle the event of frequency-flat fading as well.

Section II describes the channel model. The optimal solution
to resource allocation for power minimization is given in
Section III. An efficient solution based on dual decomposition
is developed in Section IV. To handle the event of flat fading
channels, a modification based on a dual proportional fairness
is introduced in Section V. Simulation results are given in
Section VI. Finally, conclusions are drawn in Section VII.
Notations:

Vectors and matrices are denoted by boldface letters.
(·)T and (·)H denote the transpose and conjugate transpose
operations respectively.E[·] stands for to the expectation
operator. IN denotes theN × N identity matrix. A =
blkd(A1,A2, . . . ,AK) represents the block diagonal matrix
consisting ofAk as its diagonal entries.

II. CHANNEL MODEL

In this section, the downlink channel model is given.
Consider a cellular-based MIMO-OFDM system with a BS



communicating withK user terminals viaM subcarriers.
Suppose the BS is equipped withNT antennas and thek-
th user terminal hasnk antennas. DenoteNR =

∑K
k=1 nk as

the total number of receive antennas. Letσk,m indicate the
presence of thek-th user on subcarrierm, whereσk,m = 1
if present and 0 if not. It is assumed that only 1 user is
selected on each subcarrier. Let the rank of the channel
matrix of userk on subcarrierm be denoted byηk,m, where
0 ≤ ηk,m ≤ min(nk, NT ),∀m. The baseband input-output
relationship is represented as

y = Hx + n , (1)

where x = [xT
1 , . . . ,xT

M ]T is the transmit signal vector,
H = blkd(H1, . . . ,HM ) is the channel,y = [yT

1 , . . . ,yT
M ]T

is the receive signal vector, andn is theMNR×1 noise vector.
Assume that the noise is zero-mean, circularly symmetric
complex Gaussian (CSCG) withE[nnH ] = N0I, and n
is independent ofx. For the m-th subcarrier, (1) can be
interpreted as

ym = Hmxm + nm , (2)

whereHm = [HT
1,m, . . . ,HT

K,m]T is the NR × NT random
MIMO channel andym = [yT

1,m, . . . ,yT
K,m]T is theNR × 1

receive signal vector on subcarrierm.

III. O PTIMAL SOLUTION FOR POWER M INIMIZATION

In this section, the problem of power minimization is
formulated mathematically and the optimal solution is derived.
The objective is to find the optimal subcarrier allocation
{σk,m} and power allocation{pk,m} that minimize the overall
transmit power subject to satisfying each user’s normalized
data rate requirement̄Rk bits per sec per Hz (bps/Hz). (For
M subcarriers, each with bandwidthω, the overall rate for
user k is MR̄kω bps. MR̄k bits are transmitted for userk
in the duration of one OFDM symbol i.e. one channel use.)
Define the singular value decomposition of userk’s channel
on subcarrierm as

Hk,m = Uk,mSk,mVH
k,m . (3)

Let rk,m be the rate of userk on subcarrierm, which can be
written as

rk,m =
ηk,m∑

l=1

log2

(
1 +

p̃k,m,ls
2
k,m,l

ΓN0

)
, (4)

wheresk,m,l is the l-th diagonal element ofSk,m, p̃k,m,l is
the power loading on this subchannel,pk,m =

∑ηk,m

l=1 p̃k,m,l,
and Γ is the SNR gap. Mathematically, the optimization can
be expressed as

min
{σk,m},{pk,m}

M∑
m=1

K∑

k=1

pk,m

subject to
M∑

m=1

rk,m ≥ MR̄k , ∀k

pk,m ≥ 0 , ∀k, m . (5)

If the subcarrier assignment{σk,m} is fixed, the power allo-
cation can be found for each user separately. If userk is of
interest, the problem becomes

min
{pk,m}

M∑
m=1

pk,m

subject to
M∑

m=1

rk,m ≥ MR̄k

pk,m ≥ 0 , ∀m
pk,m = 0 , σk,m = 0 . (6)

Water-filling [18] can be then carried out over userk’s eigen-
channels across all the subcarriers to find the optimal power
and rate allocation. In order to obtain the globally optimal
solution, an exhaustive search is needed over all the subcarrier
assignments{σk,m} to find the minimum transmit sum power.
Thus, K water-filling procedures overMnk singular values
have to be carried out for each ofKM possibilities.

IV. EFFICIENT SOLUTION FOR POWER M INIMIZATION

While the solution described in the previous section is
optimal, the complexity is large because of an exhaustive
search over a large set of possible subcarrier allocations. In
this section, an efficient solution to the power minimization
problem is derived based on a dual decomposition.

The Lagrangian of the optimization problem (5) is

L1 =
M∑

m=1

K∑

k=1

pk,m +
K∑

k=1

µk

(
MR̄k −

M∑
m=1

rk,m

)
, (7)

whereµk are the Lagrange multipliers andrk,m is given by
(4). If theµk are fixed, users can be selected on a per subcarrier
basis. (7) can be written as

L1 =
M∑

m=1

L2(m) +
K∑

k=1

µkMR̄k , (8)

where

L2(m) =
K∑

k=1

(pk,m − µkrk,m) . (9)

Consequently, the problem is decomposed intoM independent
subproblems. Assume that the user selection{σk,m} has been
fixed. Considering one subcarrier,

L2(m) =
K∑

k=1

ηk∑

l=1

(
p̃k,m,l − µk log2

(
1 +

p̃k,m,ls
2
k,m,l

ΓN0

))
.

(10)

L2(m) can then be minimized for each user separately in order
to calculatẽpk,m,l. By applying the water-filling procedure, the
power allocation and rate for thel-th subchannel of userk can



be found:

p̃k,m,l = max

{
µk

ln2
− ΓN0

s2
k,m,l

, 0

}
, (11)

r̃k,m,l = log2

(
max

{
µks2

k,m,l

ln2 ΓN0
, 1

})
. (12)

Consequently, a search overK possible users on subcarrierm
can be carried out to select the best user that minimizesL2(m).
Once this is carried out on all the subcarriers, the minimum
value ofL1 obtained is called the dual function. The algorithm
starts by calculating the dual function value for an initial set
of Lagrange multipliersµk. The Lagrange multipliers are then
updated iteratively to maximize the dual function value. The
maximum dual function value is thus called the dual solution
while the solution to the original optimization (5) is called the
primal solution. The dual solution obtained is always a lower
bound to the primal solution and the difference between these
two is known as the duality gap.

Overall, for M subcarriers, the complexity of the search
is O(MK). This is less than theO(KM ) complexity in
the optimal solution of Section III. In multicarrier systems
where the number of subcarriersM is typically large, this
represents a huge reduction in complexity. Furthermore, when
M is large, the duality gap is negligible [15]. For a certain
channel realization, if the duality gap happens to be zero, the
efficient solution offered in this section coincides exactly with
the optimal solution. On the other hand, if the duality gap is
not zero, this efficient solution is near-optimal in terms of sum
power minimization for target rates.

Next, the update of the Lagrange multipliers is described.
Defined = [d1, . . . , dK ]T as a scaled version of the supergra-
dient [16] of the dual function at the current set of Lagrange
multipliers, where

dk = R̄k − 1
M

M∑
m=1

rk,m . (13)

Starting from an initial value, the Lagrange multipliers are
updated in the positive supergradient direction in order to
maximize the dual function.

µk(τ + 1) = max {µk(τ) + δ dk , 0} , (14)

where τ represents the iteration number andδ is a small
step size.µk can be interpreted as the reward for userk to
increase its rate. The direction of (14) suggests that if the
rate of userk falls below its target rate, its rate rewardµk

should be increased. On the other hand, if userk exceeds its
rate requirement,µk should be decreased but the rate reward
should not fall below zero. During the optimization process,
the dual rates for the users,

rk =
M∑

m=1

rk,m , (15)

gradually approach the rate requirementsMR̄k. However, at
any point in time, the current subcarrier selections{σk,m} can

be captured to solve for the optimal minimum power solution
given target rates. As the optimization proceeds, this power
value for guaranteed rates will tend to decrease and approach
the dual function value. Unlike algorithms such as steepest-
descent, the dual function value is not guaranteed to increase
monotonically with each iteration. Therefore, the algorithm
keeps track of the the subcarrier selection{σk,m} that provides
the minimum sum power over all the previous iterations.

V. DUAL PROPORTIONALFAIRNESS

The efficient algorithm proposed in Section IV is imme-
diately applicable to harsh channel conditions. Due to the
frequency-selective nature of the channel, the user selection for
each subcarrier is optimized to minimize the overall transmit
power. However, frequency-flat fading channels may pose a
problem. For example, for the case of perfectly flat fading,
the same user would be selected for every subcarrier. Thus,
only one user is allocated all the subcarriers at any one time.
This causes serious oscillation problems for the algorithm. The
subcarrier allocation{σk,m} provided by the optimization is
unable to guarantee all the users’ target rates.

In this section, a concept calleddual proportional fairness
is proposed, drawing its inspiration from the principle of
proportional fairness [17] where randomness is exploited.
With this concept, flat fading management can be carried
out easily to handle the possibility of frequency-flat fading.
In proportional fairness, the nature of the fluctuating channel
helps the design of the time schedules; in dual proportional
fairness, the nature of the fluctuating dual rates helps the
design of the subcarrier allocation.

A. Principle of Dual Proportional Fairness

In the dual optimization method proposed in Section IV,
the Lagrange multipliers define a tangent plane in a graph of
power versus user rates. In this graph, there are several power
surfaces, each representing a different subcarrier allocation.
For any given tuple of user target rates, the pointwise minimum
of all these power surfaces is the minimum total transmit
power achievable. As the number of subcarriersM increases,
a larger number of power surfaces corresponding to various
subcarrier allocations are generated. The pointwise minimum
of these power surfaces therefore tends to assume a convex
shape. While the optimization is in progress, the tangent plane
remains in contact with this minimum surface. The current
dual rates for all the users are given by the coordinates at
the point of contact. The purpose of the Lagrange multiplier
update is to shift this tangent plane such that the dual rates
approach the users’ rate requirements. The minimum sum
power is obtained when the dual rates reach the target rates.

Flat fading channels give rise to oscillation problems be-
cause a tangent plane can touch several power surfaces at
collinear points. Suppose there are 2 users. In simulations,
it is impossible for the tangent plane to touch a middle power
surface, corresponding to a certain fraction of total subcarriers
allocated to user 1 and the remaining fraction to user 2, without
touching the other power surfaces. Consequently, the algorithm



oscillates between giving all the subcarriers to user 1 or all to
user 2. As a result, each user’s rate varies dramatically between
zero and a value exceeding its target rate.

The concept ofdual proportional fairnessis now described.
In frequency-flat fading, the power allocations and rates for
userk on all the subcarriers are identical:

pk,m = p̂k , ∀m (16)

rk,m = r̂k , ∀m (17)

pk = Mkp̂k (18)

rk = Mkr̂k , (19)

whereMk is the number of subcarriers allocated to userk and∑K
k=1 Mk = M . Consider the case of two users. The possible

coordinates given by the optimization algorithm are

(Mr̂1 , 0 , Mp̂1) (20)

(0 , Mr̂2 , Mp̂2) . (21)

Another coordinate, not given by the original optimization, is
also possible:

(M1r̂1 , M2r̂2 , M1p̂1 + M2p̂2) . (22)

Clearly, these three coordinates are collinear. This concept can
be extended to more than 2 users. The task that remains is
to obtain the right combination of{Mk} that minimizes the
transmit power. The following three steps are proposed.

1. Identify the flat fading users.
2. Identify the flat fading groups.
3. Distribute the subcarriers proportionally for each fading

group.

B. Algorithm for Flat Fading Management

1) Identify the flat fading users:Flat fading users are
identified as users with rates that oscillate largely or drop to
zero in the current and previous 9 iterations. Assume there are
Kff such users.

2) Identify the flat fading groups:For each flat fading user,
check back to see when it had received a dual rate higher
than its target rate. (If he had not, the flat fading management
cannot be done at the moment.) DenoteM̄k as the minimum
number of subcarriers userk needs to just fulfill his rate
requirement. Next, consider all users pairwise. Take user 1 and
user 2 for example. Find out where the subcarriers allocated
to user 1,Σ1, overlaps with the subcarriers of user 2,Σ2. If
they do overlap, users 1 and 2 are in the same groupGv. The
union of subcarriers is taken as the flat fading subcarriers of
this group,ΣGv . Continue this process for allKff flat fading
users. Users that are not interlinked in this manner are placed
in separate flat fading groups. Assume there areKv users in
each fading groupGv.

3) Distribute the subcarriers proportionally for each fading
group: Let there beM̃v flat fading subcarriers inGv. First
assume the special case of flat fading over all the subcarriers.

Users are allocated subcarriers cyclically until userk gets a
maximum of

round

[
M̄k∑

k∈Gv
M̄k

M̃v

]
(23)

subcarriers. To make sure all the subcarriers get allocated, the
last user gets all the remaining subcarriers.

An additional modification to (23) allows the algorithm
to handle the general case of partially frequency-selective
channels. Consider for example the case of two users. In the
graph of power versus user rates, only a subset of subcarrier
allocations result in collinear points of contact with the tangent
plane. This time, oscillations do occur but they are not
between zero and very high rates. Instead, each user’s dual
rate oscillates above and below its rate requirement while its
dual rate does not drop to zero. Practically, taking the current
subcarrier allocation{σk,m} still allows the user rates to be
guaranteed, but this is at an expense of higher transmit power
that also oscillates largely.

In the following, a modification to (23) is developed that
allows smooth convergence for the general case of partially
frequency-selective channels. For each user, find the subcar-
riers that were allocated to this user for every of the current
and previous 9 iterations. Let there beMk,min such subcarriers.
Let Σ̃Gv be the subcarriers of groupGv with the subcarriers
corresponding toMk,min of all flat fading users removed. Let

there be ˜̃Mv flat fading subcarriers iñΣGv . These subcarriers
are distributed in a similar manner as in the previous section.
All flat fading users get allocated their respectiveMk,min

subcarriers. The initial estimated number of subcarriers each
flat fading user would get from̃ΣGv is

¯̄Mk = max
{
M̄k −Mk,min , 0

}
. (24)

Users are allocated subcarriers cyclically until userk gets a
maximum of

round

[
¯̄Mk∑

k∈Gv

¯̄Mk

˜̃Mv

]
(25)

subcarriers. Again, to handle any rounding errors, the last user
is allocated all the remaining subcarriers. Subcarriers that are
not affected by the flat fading management are assigned the
same subcarriers as given by the original solution without any
flat fading management.

VI. SIMULATION RESULTS

This section evaluates the performance of the proposed al-
gorithm. A MIMO-OFDM downlink withM = 32 subcarriers
is investigated. The MIMO setup is4×[4, 4, 4], where there are
3 users and there are 4 antennas on the base station and each of
the user terminals. The rate requirement is set at 5 bps/Hz for
each user while the SNR gapΓ = 3 dB. Adaptation of the step
sizeδ for fast convergence is designed in [11] and is used here.
The algorithm in section V is used in all the simulations. The

SNR achieved is defined as
PM

m=1
PK

k=1 pk,m

MN0
. Therefore the

dual function is also scaled by 1
MN0

for comparison. Figures



1 and 2 show the convergence behaviour of the algorithm. The
vertical lines at the first few iterations indicate that the user
target rates are not feasible because at least one user did not get
any subcarriers. The ‘×’ denotes the sum power for guaranteed
target rates. Fig. 1 shows the case of a frequency-selective
channel with 9 taps. The power given by the efficient algorithm
approaches the dual function value closely, suggesting that the
duality gap is almost zero. The flat fading scenario is shown in
Fig. 2. Despite the widely oscillating dual rates, the algorithm
quickly achieves a sum power that guarantees all user rate
targets, thanks to the dual proportional fairness principle.

VII. C ONCLUSION

Optimal resource allocation for power minimization in the
MIMO-OFDM downlink subject to user target rates has been
considered. This paper proposes an efficient algorithm that
obtains the subcarrier, power, and rate allocations through the
use of a dual decomposition, thereby achieving a much lower
complexity. In typical multicarrier systems where the duality
gap is small, this solution is close to the optimal solution. A
concept calleddual proportional fairnessis proposed to realize
good performance in all fading scenarios, even in frequency-
flat fading. Simulations show fast convergence of the algorithm
to a near-optimal power.
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