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Block Diagonal Geometric Mean Decomposition
(BD-GMD) for MIMO Broadcast Channels
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Abstract—In recent years, the research on multiple-input
multiple-output (MIMO) broadcast channels has attracted much
interest, especially since the discovery of the broadcast channel
capacity achievable through the use of dirty paper coding (DPC).
In this paper, we propose a new matrix decomposition, called
the block diagonal geometric mean decomposition (BD-GMD),
and develop transceiver designs that combine DPC with BD-
GMD for MIMO broadcast channels. We also extend the BD-
GMD to the block diagonal uniform channel decomposition (BD-
UCD) with which the MIMO broadcast channel capacity can be
achieved. Our proposed schemes decompose each user’s MIMO
channel into parallel subchannels with identical SNRs/SINRs,
thus equal-rate coding can be applied across the subchannels of
each user. Numerical simulations show that the proposed schemes
demonstrate superior performance over conventional schemes.

Index Terms—MIMO systems, broadcast channel (BC), uplink-
downlink duality, equal-rate coding, geometric mean decompo-
sition (GMD), block diagonal geometric mean decomposition
(BD-GMD), block diagonal uniform channel decomposition (BD-
UCD), decision feedback equalization (DFE), dirty paper coding
(DPC), channel capacity.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) is a
promising technology for next generation wireless

communications systems. Relative to its single-input single-
output (SISO) counterpart, MIMO techniques exhibit
considerable improvements in reliability and throughput for
communications systems [1], [2], [17].

For the single-user scenario, the singular value decompo-
sition (SVD) can be used to generate multiple subchannels.
However, the usually large condition number of the channel
matrix results in subchannels with vastly different signal-to-
noise-ratios (SNRs). From the information theoretical view-
point, in order to achieve the channel capacity, variable-
rate coding can be used across these decoupled subchannels.
However, this may require special code design due to the
variation of the supported rate of the subchannels. In prac-
tice, bit loading is designed to match the supported rates
of each subchannel, i.e., each subchannel is allocated with
one modulation/coding scheme (MCS). By doing so, however,
the good subchannels may require very high order QAMs,
which may be difficult to implement for wireless systems due
to the existence of phase noises and synchronization errors.
On the other hand, if the same MCS is used on all the
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subchannels, the BER performance will be dominated by the
weakest subchannel. Recently, geometric mean decomposition
(GMD) [5] has been proposed to resolve this problem by
decomposing the MIMO channel into multiple subchannels
with identical SNRs, with the help of dirty paper coding (DPC)
[25] or interference cancellation. With that, the same MCS
can be applied across all the subchannels, thus the order of
the required QAM can be relatively small due to the sharing
among all subchannels. Therefore, the GMD-based scheme is
useful when there is a limitation on the order of QAM being
used in practical system design.

Multiuser communications is an area of intense research,
especially since the recent discovery of the MIMO broadcast
channel capacity [7], [8], [9], [10]. It has been shown that
when the channel state information (CSI) is available at
the transmitter, the capacity region of the MIMO broadcast
channel is exactly equal to the capacity region of its dual
uplink multiple access channel. While the uplink capacity
is achievable by the minimum mean squared error (MMSE)
decision feedback equalizer (DFE) [16], the broadcast chan-
nel capacity is likewise achievable via DPC. In multiuser
broadcast channels, unlike the single-user MIMO, cooperation
is not permitted between different users. However, receive
equalization is possible for each user. There have been several
schemes proposed for low complexity MIMO broadcast com-
munications. These include schemes based on TDMA [19],
linear block diagonalization [20], [21], [22], and random /
opportunistic beamforming [23], [24]. However, these schemes
would normally fail to achieve the broadcast channel capacity.

In this paper, the single-user GMD is extended to the
multiuser MIMO broadcast scenario. Our design criteria is that
for each user, subchannels with identical SNRs are to be cre-
ated. To achieve this, a new matrix decomposition, called the
block diagonal geometric mean decomposition (BD-GMD), is
first proposed. Four applications of the BD-GMD are then
designed. The first two applications are low-complexity zero-
forcing (ZF)-based schemes, while the later two are MMSE-
based schemes of higher complexity. All four of them use DPC
at the transmitter. Tomlinson-Harashima precoding (THP)
[26], [27], a simple suboptimal implementation of DPC, can
also be used in conjunction with these new schemes. In the
first application, a BD-GMD-based DPC scheme is designed,
that generates subchannels with identical SNRs for each user,
while different rates may be experienced between different
users. Such a scheme is said to be block-equal-rate. In the
second application, a scheme that allows equal-rate coding
among the subchannels of all users is constructed. Such a
scheme is said to be equal-rate. Power control via channel
inversion is shown to optimize the achievable sum-rate. The
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resulting scheme is called the Equal-Rate BD-GMD. User
ordering is proposed to improve the fairness of the BD-GMD-
based DPC scheme or to increase the achievable sum-rate for
the Equal-Rate BD-GMD scheme.

ZF-based schemes are inherently capacity lossy. In the third
application, using the uplink-downlink duality [7], [8], the
BD-GMD is extended to the block diagonal uniform chan-
nel decomposition (BD-UCD) which achieves the sum-rate
capacity for the MIMO broadcast channel. Specifically, Jindal
et al.’s sum-power iterative water-filling algorithm [12] is used
to obtain the optimal transmit power allocation and precoder
for the scheme. In the fourth application, an equal-rate scheme
called the Equal-Rate BD-UCD is proposed. This is done by
first considering the problem of uplink beamforming under
signal-to-interference-plus-noise-ratio (SINR) constraints [13]
for mobile users with multiple antennas. An efficient algorithm
which finds a near-optimal solution is then given, and duality
is applied to produce the desired scheme.

The first two applications are ZF extensions to the GMD
scheme, while the later two applications can be considered
as MMSE extensions to the uniform channel decomposition
(UCD) scheme [6]. For each of the ZF and MMSE cases, the
first scheme proposed is a block-equal-rate scheme, while the
second is an equal-rate scheme. For the equal-rate schemes,
besides the fairness achieved among the different users, by
providing each user with the same rate and if THP is used as
a suboptimal DPC technique, the same modulus operator can
be used for all subchannels across all the users. This obviates
the need to implement multiple modulus operators to match
the different modulation schemes used by the various users.
Simulation results show that our proposed schemes exhibit
superior performance over existing schemes.

The paper is organized as follows. The MIMO broadcast
channel model and capacity results are presented in Section II.
A review of conventional transceiver schemes, MMSE-DFE,
MMSE-DPC, and ZF-DPC is also given in this section. In
Section III, the block diagonal geometric mean decomposi-
tion is proposed. In Sections IV-A and IV-B, the ZF-based
schemes, BD-GMD and Equal-Rate BD-GMD, are designed.
Section V-A details the application of the uplink-downlink
duality result to the MIMO broadcast situation. Sections V-B
and V-C lay out the design of the MMSE-based schemes,
BD-UCD and Equal-Rate BD-UCD. Simulation results are
presented and discussed in Section VI, and a conclusion is
given in Section VII.

The following notations are used in the paper. The boldface
is used to denote matrices and vectors, and E[·] for expecta-
tion. Let Tr(X), XT , XH and X−1 denote the matrix trace,
transpose, conjugate transpose and inverse, respectively, for
a matrix X. [X]i,j will usually denote the matrix element
at the i-th row and j-th column, unless otherwise stated.
diag(X1, . . . ,Xn) denotes the block diagonal matrix with
diagonal elements X1, . . . ,Xn, while diag(X) represents the
diagonal matrix with the same diagonal as a matrix X. U(X)
and L(X) denote the upper and lower triangular matrices,
respectively, formed using the matrix X. ‖ · ‖ denotes the
vector Euclidean norm, and |x| the absolute value of a complex
number x.

II. CHANNEL MODEL AND PRELIMINARIES

Given an infrastructure based system with one base station
(BS) and K mobile users, consider the broadcast channel from
the BS to the mobile users. The BS is equipped with NT

antennas, and the i-th mobile user has ni antennas. Let NR =∑K
i=1 ni be the total number of receive antennas, where NR ≤

NT . Denote this channel by NT × {n1, . . . , nK}. The input-
output relation can be represented as

y = Hx + u , (1)

where x is the NT × 1 transmit signal vector at the BS, y the
NR × 1 receive signal vector with y = [yT

1 , · · · ,yT
K ]T , and

each yi the ni × 1 receive signal vector of user i. Assume
that the noise vector u is a zero-mean, circularly symmetric
complex Gaussian (CSCG) vector with E[uuH ] = N0I, and
u is independent of x. Assume also that E[‖x‖2] = Es and
det(HHH) �= 0. Let ρ = Es/N0 be the SNR. It will also be
useful to write H = [HT

1 ,HT
2 , . . . ,HT

n ]T , where Hi is the
ni × NT channel matrix of user i.

If x is a Gaussian random vector, the sum-capacity of this
broadcast channel [7], [8], [9], [10] is given by

sup
Tr(FFH)≤Es

log det
(
I +

1
N0

HHFFHH
)

, (2)

where F is a block diagonal matrix: F = diag(F1, · · · ,FK),
where each block Fi is a ni×ni matrix. This sum-capacity can
be achieved by a scheme that combines DPC with linear pre-
equalization. A fundamental step in proving this theorem is
showing that there is a dual relationship between uplink DFE
and downlink DPC schemes. This uplink-downlink duality
result will be discussed in greater detail in Section V-A. In
[11], the authors extended the capacity theorem by verifying
that the capacity region of the Gaussian MIMO broadcast
channel is precisely the DPC rate region.

We now review some of the basic transceivers for point-
to-point MIMO and broadcast channels, the results of which
will be used in our transceiver design for MIMO broadcast
channels.

A. MMSE-DFE

Consider the NT ×NR point-to-point channel y = Hx+u
where E[xxH ] = (Es/NT )I and E[uuH ] = N0I. The
MMSE-based DFE can be represented by the block diagram
in Figure 1. The columns wi of its nulling matrix W are given
by

wi =

⎛⎝ i∑
j=1

hjhH
j + ηI

⎞⎠−1

hi , 1 ≤ i ≤ NT (3)

where η = N0(NT /Es) and H = [h1, . . . ,hNT ]. It applies
successive interference cancelation (SIC) via the feedback
matrix B−I, where B is referred to as the interference matrix
and is given by

[B]i,j =
{

[WHH]i,j if i < j,
[I]i,j otherwise.

(4)

Denote this monic upper triangular matrix by B = U(WHH).
For convenience, also define L(X) = U(XH)H for any square
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Fig. 1. Block diagram of the MMSE-DFE scheme.

matrix X. Now, alternatively, the nulling and interference
matrices can be found via the QR-decomposition [3][

H√
ηI

]
= Q1R1 , Q1 =

[
Q1u

Q1d

]
, R1 = Λ1B1 ,

(5)

where Q1 has orthonormal columns, Q1u is NR × NT , Q1d

is NT × NT , R1 is NT × NT and upper triangular, Λ1 =
diag(R1), and B1 is upper triangular with unit diagonal. (Note
that Q1u and Q1d are not unitary.) Then, the nulling and
interference matrices satisfy

WH = Λ−1
1 QH

1u and B = B1 . (6)

The symbols are detected from x̂NT to x̂1 as follows:

for i = NT : −1 : 1
x̂i = C

[
[WHy]i −

∑NT

j=i+1[B]i,j x̂j

]
end

where C denotes the mapping to the nearest signal point in
the constellation. Ignoring the effect of error propagation, the
MMSE-DFE scheme produces decoupled subchannels of the
form yi = rixi + ui where ri is the i-th diagonal element of
Λ1. In [6], it was shown that

η(1 + ρi) = r2
i , (7)

where ρi is the SINR of the i-th subchannel. Thus, the capacity
of the scheme can be written as
NT∑
i=1

log(1 + ρi) =
NT∑
i=1

log
(

r2
i

η

)
= log det

(
I +

1
η
HHH

)
.

(8)

This gives another proof that the MMSE-DFE receiver is
information lossless [16], [6].

B. MMSE-based DPC

One major problem with DFEs is error propagation. If CSI
is known at the transmitter, interference between subchannels
can be cancelled completely before transmission via DPC.
Here, a general view of MMSE-based DPC via successive
interference pre-subtraction is developed. Consider once again
the NT ×NR point-to-point channel y = Hx+u from Section
II-A. However, it will not be required that E[uuH ] = N0I
but only that E[|ui|2] = N0 for each i. Assume that there
is no collaboration between the receive antennas. Writing
hij = [H]i,j , the i-th subchannel is

yi = (
∑
j<i

hijxj) + hiixi + (
∑
j>i

hijxj) + ui . (9)

Fig. 2. Block diagram of the MMSE-DPC scheme using THP.

The hope is to treat (
∑

j<i hijxj) as interference terms to
be cancelled at the transmitter. If these interference terms are
cancelled perfectly, then a single input single output (SISO)
MMSE receiver that sees (

∑
j>i hijxj) + ui as noise terms

can be used on each subchannel. The corresponding MMSE
coefficient for the i-th subchannel is

di =
h∗

ii

η +
∑

j≥i |hij |2 , (10)

where x∗ is the conjugate of a complex number x. Denoting
Dd = diag(d1, . . . , dNR), the equivalent channel is now
DdH. Thus, the interference terms can be represented by the
lower triangular unit-diagonal matrix B = L(DdH), called
the interference matrix. Meanwhile, the SINR of the i-th
subchannel is given by

ρi =
|hii|2

η +
∑

j>i |hij |2 . (11)

A simple and useful relation between (10) and (11) can be
noted at this point. Let Σ0 = η +

∑
j>i |hij |2. Then, ρi =

|hii|2/Σ0 and di = h∗
ii/(Σ0 + |hii|2). Eliminating Σ0 gives

di =
ρi

hii(1 + ρi)
. (12)

One low-complexity suboptimal implementation of DPC is
Tomlinson-Harashima precoding (THP) [14]. The block di-
agram of a MMSE-based DPC scheme using THP is shown
in Figure 2. The vector x̃ to be transmitted can be evaluated
from x̃1 to x̃NT using

x̃1 = x1

for i = 2 : 1 : NT

x̃i = mod
[
xi −

∑i−1
j=1[B]i,j x̃j

]
end

A downside of THP is the slight increase in the average
transmit power by a factor of M/(M − 1) for M -QAM
symbols, called the precoding loss. For large constellations,
this loss is negligible.

C. ZF-DPC

Consider the MIMO broadcast channel described in (1). If
CSI is available at the transmitter, interference cancellation via
dirty paper precoding can be performed. THP can be used as a
suboptimal implementation of DPC. Conventional precoding
schemes often treat multiple antennas of different users as
different virtual users. One example is the zero-forcing THP
(ZF-THP) scheme [14]. It is based on the QR decomposition
HH = QR, or H = RHQH . The linear precoder Q is
applied before transmission so that x = Qs, where s is the
vector of information symbols to be sent. This transforms the
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channel to y = RHs + u, on which THP is applied to pre-
subtract the interference represented by the lower triangular
matrix RH . Thus, NR decoupled subchannels yi = risi + ui,
where ri is the ith diagonal element of R, are obtained.

Another example comes from [15]. The authors considered
pre-equalization matrices F such that the resulting channel
matrix HF is lower triangular and has diagonal elements all
equal to a certain value, say r. Here, F need not be unitary
but only has to satisfy the power constraint Tr(FFH) ≤ Es.
The precoder F that maximizes r in HF can be found
algorithmically. The scheme now only needs to perform THP
to cancel the interference represented by the lower triangular
matrix HF before pre-equalizing with F and transmitting
the signal. This scheme generates NR decoupled subchannels
yi = rsi + ui on which equal-rate coding can be applied.
Hence, their scheme will be referred to as the Equal-Rate ZF-
THP scheme.

III. BLOCK DIAGONAL GEOMETRIC MEAN

DECOMPOSITION

In this section, the block diagonal geometric mean decom-
position (BD-GMD) is developed. We begin by describing
the motivation for developing such a decomposition. In the
case where some of the mobile users have multiple antennas,
performance gain can be expected from doing equalization
on the receiver side. This equalization can only be done for
the data streams of the same user, and not between users. It
can be represented as a premultiplication of the receive signal
y(n) by a block diagonal matrix A: A = diag(A1, · · · ,AK),
where each block Ai is the ni × ni equalization matrix of
user i. Each row of Ak is assumed to be of unit norm so
that the noise vector u is not amplified by A. Note that
the situation where the mobile users have single antennas is
represented by the case A = I. Equalization by A gives the
equivalent channel matrix AH which can then be cancelled
by transmitter techniques such as ZF-THP or MMSE-THP.

Suppose ZF-THP is used at the transmitter, and the QR-
decomposition AH = RHQH is considered. Since the aim is
to construct a block-equal-rate scheme, it is natural to ask if it
can be accomplished by choosing an appropriate equalization
matrix A. To simplify the problem, assume further that A is
unitary. Our problem can now be stated as follows. Let H be
an NR × NT matrix, and n1, ..., nK a sequence of integers
such that NR =

∑K
i=1 ni. Consider matrix decompositions

of the following form [5]: H = PLQH , where Q is a
NT ×NR matrix with orthonormal columns, L is a NR×NR

lower triangular matrix, and P is a NR ×NR block diagonal
matrix of the form diag(P1,P2, . . . ,PK) where each block
Pi is a unitary ni × ni matrix. The task is to find a matrix
decomposition such that the diagonal elements of L are equal
in blocks of n1, . . . , nK elements respectively.

A. Proposed Algorithm

The algorithm to solve the above problem is as follows.
Write the product H = PLQH as[

H1

H
]

=
[

P1 0
0 P

] [
L1 0
Ξ L

] [
QH

1

QH

]
, (13)

where H1 and QH
1 are n1 ×NT submatrices, and L1 and P1

are n1×n1 square matrices. H denotes the combined channel
matrix of all the remaining users. Expanding (13) gives the
following two equations

H1 = P1L1QH
1 , (14)

H = PΞQH
1 + PLQH . (15)

From equation (14), it can be seen that by using the GMD,
the diagonal elements of L1 can be made equal. Now, since
Q has orthonormal columns, the submatrices Q1 and Q
are orthonormal to each other. Thus, from equation (15),
multiplication by the projection matrix I − Q1QH

1 gives

H(I − Q1QH
1 ) = PLQH . (16)

Here, the right side of (16) has the same form as (13), so
the algorithm proceeds recursively. Finally, to solve for Ξ,
equation (15) is multiplied by PH and Q1, giving

Ξ = PHHQ1 . (17)

The decomposition that achieves equal diagonal elements in
each block of L will be referred to as the block diagonal
geometric mean decomposition (BD-GMD).

B. Diagonal Elements

Consider a BD-GMD decomposition H = PLQH . Let the
diagonal element of the i-th block of L be ri. To calculate
each ri, equations (13) and (14) are generalized to get[

Ĥi

H
]

=
[

P̂i 0
0 P

] [
L̂i 0
Ξ L

] [
Q̂H

i

QH

]
(18)

Ĥi = P̂iL̂iQ̂H
i , (19)

where Ĥi represents the combined channel matrix of users 1
to i. The submatrices Ĥi, P̂i, L̂i and Q̂H

i each have
∑i

j=1 nj

rows. Because P̂i and Q̂i have orthonormal columns, equation
(19) shows that the singular values of Ĥi and L̂i must be the
same. Thus,

det(ĤiĤH
i ) = det(L̂iL̂H

i ) =
i∏

j=1

r
2nj

j . (20)

Therefore, the i-th diagonal element is given by

ri = 2ni

√√√√ det(ĤiĤH
i )

det(Ĥi−1ĤH
i−1)

. (21)

IV. ZF-BASED SCHEMES

The previous section introduced the new decomposition
for multiuser communications. In this section, transceiver
designs based on this decomposition would be described. The
following two schemes are ZF-based schemes. This means that
they are of a relatively low complexity, and offer a reasonable
tradeoff between performance and efficiency.
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A. BD-GMD-based DPC Scheme

Having more than one user means that different decompo-
sitions can be obtained by changing the encoding order of the
users. As a result, different sets of values for the diagonal
elements of L can be obtained. Let {π1, π2, . . . , πK} be the
ordering of the users where the previous π1-th user is now
the first user, and so on. Since the ordering of the users
result in the ordering of the rows of H, this ordering may
also be represented by a permutation matrix D such that
DH = PLQH . Here, the i-th block Pi of P has dimensions
nπi × nπi . Suppose s = [sT

1 , · · · , sT
K ]T is the vector of

information symbols to be sent, where si is the corresponding
ni×1 vector of user i. Write L = ΛB with Λ = diag(L), and
B a lower triangular matrix with unit diagonal. Multiplying
(1) by D gives

ỹ = PLQHx + ũ , (22)

where ỹ is the reordered received signal vector. Let s̃ = Ds
be the reordered information symbol vector. Using x = Qs̃
and z̃ = PH ỹ for the transmit and receive equalization
respectively transforms the channel to

z̃ = Ls̃ + ũ′ . (23)

Now, DPC is performed at the transmitter to pre-subtract the
interference represented by L. As a result, user πi enjoys nπi

independent and equivalent subchannels of the form: zi =
risi + ui, where ri is the diagonal element of the i-th block
of L. The available transmit power Es is distributed equally
among the NR subchannels. Then, the achievable sum-rate for
the scheme is given by

C =
K∑

i=1

nπi log2

(
1 +

Es

N0NR
r2
i

)
. (24)

Figure 3 shows the block diagram of the BD-GMD-based
scheme that performs user ordering and uses THP instead
of DPC. Here, PH

i is the i-th sub-block of the block diag-
onal unitary matrix PH . To improve the performance of the
scheme, different constellations can be applied to the users.
The base station and mobile users decide a priori on a fixed
set of constellations to use. Before data transmission over
a block period of time, the BS informs each user which
constellation to apply, depending on the performance of their
channels. The user then uses the same constellation for all
his subchannels since the subchannels have identical SNRs.
In certain scenarios, it may be better to use a modified
form of the BD-GMD that involves subchannel selection. The
reason is similar to that of the subchannel selection principle
for the single-user GMD [5]. Additionally, in the case of
multiuser communications, subchannel selection for one user
may actually provide a better performance for later encoded
users, due to the provision of more spatial degrees of freedom.
For conciseness and clarity, subchannel selection will not be
further developed in this paper. However, this is an interesting
concept that could be considered in future works.

1) Ordering for the BD-GMD-based Scheme: From Section
II-C, it is seen that the i-th diagonal element corresponds to
the channel gain of the i-th subchannel. Here, assume that H
contains i.i.d. Gaussian entries. Now, the diagonal elements

Fig. 3. Block diagram of BD-GMD-based scheme with user ordering and
THP.

of L will usually be in decreasing order, because LQH is
the QR-decomposition of PHH. The first diagonal element
can often be many times that of the last one. Thus, the
first subchannel usually enjoys much better performance than
the last subchannel. Equation (21) tells us that the diagonal
elements ri depend on the ordering of the rows of H or, in
other words, the ordering of the users. The hope is to improve
the fairness of the scheme by ordering the users to increase
the size of the last few diagonal elements.

A method inspired by the BLAST [17] ordering is used.
First, note that det(Ĥi−1ĤH

i−1) does not change with the order
of the rows of Ĥi−1. Thus, from (21), it is seen that the value
of rK depends only on the choice of HK and not the order
of the first K − 1 users. Therefore, to maximize rK , HK is
chosen to minimize (21). Following that, HK−1 is chosen to
minimize (21), and so on. The decomposition that optimizes
the diagonal elements in such a way is called the ordered BD-
GMD. For the BD-GMD-based scheme, this ordering tends to
increase the user fairness.

B. Equal-Rate BD-GMD Scheme

While BD-GMD achieves equal rates for the sub-channels
of each user, the achievable rates between different users
vary greatly. In this section, equal rates for all subchannels
across all the users is achieved by relying on optimal transmit
power control. This is the Equal-Rate BD-GMD scheme. It
maximizes the sum-rate while ensuring overall equal rates.

Following the example of Section IV-A, we will now
construct a ZF-based scheme which maximizes the achievable
sum-rate given overall equal rates. Let F, J and A be the pre-
equalization, interference and receive equalization matrices
respectively of a general equal-rate ZF-based scheme. Let α be
the channel gain which is identical for all the subchannels. To
optimize the achievable sum-rate, we only need to maximize
the channel gain:

maximize α

subject to J ∈ L , A ∈ B ,

AHF = αJ , Tr(FHF) ≤ Es ,

‖A(i, :)‖ = 1 for 1 ≤ i ≤ NR . (25)

where L is the set of all monic lower triangular matrices and
B is the set of all block diagonal matrices in which the i-th
block is a ni × ni submatrix. The solution of this problem is
by channel inversion, as the following theorem shows.

Theorem 1: Suppose det(HHH) �= 0. Let H = PLQH

be the BD-GMD of H, and let Λ = diag(L). Then, the
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Fig. 4. Block diagram of equal-rate BD-GMD scheme with user ordering
and THP.

optimization problem (25) is solved by

F = αQΛ−1, J = LΛ−1,

A = PH , α =

√
Es

Tr(Λ−2)
. (26)

Proof: See Appendix A.

Using the pre-equalization and receive equalization matrices
given in Theorem 1, the channel becomes z = αJs + u′.
DPC is then done at the transmitter to cancel the interference.
As a result, every user enjoys independent and equivalent
subchannels of the form z = αs + u. The achievable sum-
rate for the scheme is given by

C = NR log2(1 + N0
−1α2) . (27)

Given a fixed order of users, Theorem 1 tells us that the above
Equal-Rate BD-GMD scheme optimizes the zero-forcing lin-
ear beamforming vectors and power allocation required to
achieve maximum throughput and equal rates for every sub-
channel of every user.

1) Ordering for the Equal-Rate BD-GMD Scheme: Some
improvement in performance can be expected by ordering the
users appropriately. From (26), we have

α2 =
Es

Tr(Λ−2)
=

Es∑K
i=1 nir

−2
i

, (28)

where ri is the diagonal element of the i-th block of Λ. Hence,
given the constraint that

∏K
i=1 r2ni

i = det(HHH) is constant,
(28) is maximized when the ri’s are equal. In general, the
channel gain α increases when the spread among {ri}K

i=1

decreases. This can be accomplished by using the ordered
BD-GMD which reduces the gap between the largest and
smallest diagonal elements of Λ. The ordering described in
Section IV-A1 is near-optimal for maximizing the sum-rate,
for the case where H contains i.i.d. Gaussian entries. The
best ordering may be found by an exhaustive search. Figure 4
shows the block diagram of an Equal-Rate BD-GMD scheme
that applies the ordered BD-GMD. As before, THP is used as
a suboptimal implementation of DPC in the scheme.

V. MMSE-BASED SCHEMES AND UPLINK-DOWNLINK

DUALITY

The previous section described ZF-based schemes. In this
section, two MMSE-based schemes are introduced. These
schemes would have improved performance over the ZF-based
schemes, but at the cost of a moderately higher complexity. At
high SNRs, the sum rates of the ZF-based schemes approach
that of the MMSE-based schemes. Before going into the

transceiver designs, a brief description of the uplink-downlink
duality is crucial in explaining the design of the MMSE-based
schemes.

A. Uplink-Downlink Duality

This section explains the uplink-downlink duality that
would be vital in converting the uplink solution to the down-
link case, for the proposed schemes in sections V-B and V-C.
We return to the NT ×{n1, . . . , nK} MIMO broadcast channel
described in Section II. The uplink-downlink duality results
[7], [8] will now be used to construct a DPC scheme that
consumes the same power and achieves the same rates as a
given MMSE-DFE scheme. This DPC scheme is dual to the
MMSE-DFE scheme.

First, suppose the following MMSE-DFE scheme is given.
Consider the {n1, . . . , nK} × NT uplink channel

y = HHx + u , (29)

which has K mobile users with n1, . . . , nK transmit anten-
nas respectively, and a BS with NT receive antennas. Let
E[uuH ] = N0I, and E[‖x‖2] = Es. This channel is dual
to the broadcast channel in Section II. Meanwhile, let each
user i be equipped with a pre-determined linear precoder Fi.
Combine all the precoders in a block diagonal matrix F, and
consider a MMSE-DFE receiver at the BS. Using (5), the QR
decomposition for the equivalent channel HHF is as follows:[

HHF√
N0I

]
=

[
Qu

Qd

]
ΛB . (30)

It implies that the nulling matrix is WH = Λ−1QH
u , and that

the interference matrix is B. Normalize the columns of F by
writing its i-th column as

√
pifi where

√
pi is the norm and

fi a unit column vector. Since

x = Fs =
NR∑
i=1

√
pifisi , (31)

pi represents the power allocated to the i-th information sym-
bol si. Thus, the total power is

∑NR

i=1 pi = Tr[FFH ] = Es.
Also, normalize the columns of W, writing the i-th column
as ciwi where ci is the norm. Here, ci can be thought of as
an MMSE weight similar to that in (10), since it scales the
signal in the i-th subchannel. Assuming that the symbols are
cancelled perfectly in the SIC, the SINR of the i-th subchannel
is given by

ρi =
pi|wH

i HHfi|2
N0 +

∑
j<i pj|wH

i HHfj |2 . (32)

Now, construct the dual DPC scheme for the broadcast channel
as follows. Let F̃ be the linear precoder at the BS, B̃ the
interference matrix, and W̃H the combined nulling matrix of
the mobile users. The block diagram for this scheme is shown
in Figure 5, where W̃H

i is the i-th sub-block of the block
diagonal matrix W̃H . First, define the i-th column of F̃ to
be

√
qiwi. Here, qi is an unknown representing the power

allocated to the i-th information symbol. Next, define the i-
th column of W̃ to be difi where di is an unknown MMSE
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Fig. 5. Block diagram of dual DPC scheme.

weight. Since the goal is to achieve the same SINRs, by (11),
the power coefficients qi need to satisfy

ρi =
qi|fH

i Hwi|2
N0 +

∑
j>i qj |fH

i Hwj|2 for 1 ≤ i ≤ NR . (33)

Using the notations q = [q1, . . . , qNR ]T , ρ = [ρ1, . . . , ρNR ]T

and αij = |fH
i Hwj |2, rewrite (33) in matrix form [6]:⎡⎢⎢⎢⎣

α11 −ρ1α12 . . . −ρ1α1NR

0 α22 . . . −ρ2α2NR

...
...

. . .
...

0 0 . . . αNRNR

⎤⎥⎥⎥⎦q = N0ρ . (34)

Thus, q can be derived. In [7], the authors showed that∑NR

i=1 qi =
∑NR

i=1 pi, so both the MMSE-DFE scheme and the
dual DPC scheme consume the same total power Es.

To compute the MMSE weights di, the relation in (12) is
exploited:

di =
ρi

(1 + ρi)
√

qifH
i Hwi

. (35)

By the same reasoning on ci, the MMSE weights for the uplink
channel, it follows that

ci =
ρi

(1 + ρi)
√

piwH
i HHfi

. (36)

Since ci is defined to be a vector norm, ci is real so
wH

i HHfi is real. Consequently, wH
i HHfi = fH

i Hwi and
thus di

√
qi = ci

√
pi. Denote Dq = diag(

√
q1, . . . ,

√
qNR)

and similarly define diagonal matrices Dp, Dc and Dd for
{√pi}, {ci} and {di}. Thus, DdDq = DcDp. Finally, to
complete the dual DPC scheme, the interference matrix B̃ is
computed. Using the relations

B = U(WHHHF) , W̃ = FD−1
p Dd = FD−1

q Dc ,

F̃ = WD−1
c Dq , L(X)H = U(XH) , (37)

the following result is derived:

B̃ = L(W̃HHF̃) = DcD−1
q BHD−1

c Dq . (38)

Using (7), the achievable sum-rate for both the MMSE-DFE
and dual DPC scheme can be written as

NR∑
i=1

log(1 + ρi) =
NR∑
i=1

log
(

λ2
i

N0

)
= log det(I +

1
N0

HHFFHH) . (39)

B. BD-UCD Scheme

In this section, a DPC scheme that is block-equal-rate
and achieves the broadcast channel capacity is constructed.
The idea is to first design a capacity-achieving MMSE-DFE
scheme that generates subchannels with identical SINRs for
each user by choosing an appropriate precoder F. Then, the
results from Section V-A gives us the dual DPC scheme. This
BD-UCD scheme is capacity-achieving and ensures equal rates
per block.

We begin with the dual uplink channel from Section V-A.
Let F̄ be a linear precoder for this uplink channel that achieves
its sum-capacity, i.e. F̄ solves the optimization problem in (2).
Different methods of solving this problem are described in
[12], including Jindal et al.’s sum-power iterative water-filling
algorithm which will be used in this paper. Note that for any
block diagonal unitary P̄, the precoder F̄P̄ gives the same
sum-capacity as F̄. It remains for us to choose P̄ such that
the MMSE-DFE scheme using the precoder F = F̄P̄ is block-
equal-rate. From (5), this is equivalent to finding P̄ such that
the QR decomposition[

HHF̄P̄√
N0I

]
=

[
Qu

Qd

]
ΛB (40)

gives a Λ whose diagonal elements are equal in blocks of
n1, . . . , nK elements respectively. Following [6], rewrite the
LHS of (40) as [

I 0
0 P̄H

] [
HHF̄√

N0I

]
P̄ . (41)

Consider the BD-GMD of the middle term[
HHF̄√

N0I

]H

= PLQH , (42)

where P is block diagonal, L is lower triangular, and both
P and Q have orthonormal columns. Consequently, (40)
becomes [

I 0
0 P̄H

]
QLHPHP̄ =

[
Qu

Qd

]
ΛB . (43)

Hence, we can choose P̄ = P, ΛB = LH and Qu to be
the top NT rows of Q. This gives us our desired capacity-
achieving block-equal-rate MMSE-DFE scheme.

The dual DPC scheme that is block-equal-rate and capacity-
achieving can now be constructed. Figure 5 shows the block
diagram of this scheme using THP. Using the duality technique
in Section V-A, the pre-equalization, interference and nulling
matrices are

F̃ = QuΛ−1D−1
c Dq ,

B̃ = DcD−1
q LΛ−1D−1

c Dq ,

W̃ = F̄PD−1
q Dc , (44)

where Dq is calculated from (34) and Dc contains the column
norms of QuΛ−1. To speed up the calculation of Dq , (7) can
be used instead of (32) to compute ρi. This dual DPC scheme
is called the block diagonal UCD (BD-UCD), since the special
single-user case of K = 1 is the UCD scheme in [6]. Its sum-
capacity, as shown by (39), is precisely the broadcast channel
sum-capacity.
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C. Equal-Rate BD-UCD Scheme

In this section, a near-optimal DPC scheme for the broadcast
channel that generates decoupled subchannels all with iden-
tical SINRs will be constructed. This Equal-Rate BD-UCD
scheme maximizes the sum-rate given overall equal rates. This
construction can be generalized to other rate constraints for
the users. The crux lies in choosing the right uplink precoder
F̄ so that the method in Section V-B produces the desired
equal-rate scheme. The resulting scheme is called the Equal-
Rate BD-UCD. The rest of this section will focus on finding
this precoder. Let HH = [HH

1 ,HH
2 , . . . ,HH

K ] be the uplink
channel, where each HH

i has ni columns. Let F̄i be the i-th
block of the block diagonal F̄. Then, the rate of user i, where
user K is decoded first, is [8]

Ri = log
det(I + 1

N0

∑
j≤i H

H
j F̄jF̄H

j Hj)

det(I + 1
N0

∑
j<i H

H
j F̄jF̄H

j Hj)
. (45)

Ideally, for each i, Ri = niR̄ for some R̄, and Tr(F̄F̄H) ≤
Es. The goal is to find F̄ such that R̄ is maximized. While [18]
has solved the symmetric capacity maximization, the scheme
proposed here adds a further constraint that for any particular
user, its subchannels have equal SINRs. The symmetric capac-
ity maximizing solution would require time-sharing between
schemes with different encoding orders. However, in order
to minimize the complexity for our scheme, only a single
decoding order is chosen, which may be suboptimal. In this
section, the general equal-rate problem is solved with a fixed
user ordering. A near-optimal algorithm of low complexity
inspired by [13] and [12] is proposed below.

The basic building block of the algorithm is as follows:
given a target rate R̄, find a precoder F̄ that achieves the rate
R̄ for every subchannel with minimum power. Using a trick
from [12], rewrite (45) as

niR̄ = log det(I +
1

N0
GiF̄iF̄H

i GH
i ) , (46)

where Gi = (I + 1
N0

∑
j<i H

H
j F̄jF̄H

j Hj)−1/2Hi is the
equivalent channel with the interference of all the other users.
Thus, if Gi is given, then the minimum power F̄i satisfying
(46) can be found by water-filling over it. Since Gi only
depends on F̄j for j < i, equation (46) can be solved
successively from i = 1 to i = K . Of course, to find the
F̄ with minimum power satisfying the equations in (46) for
all i, the F̄i’s may need to be optimized jointly using iterative
methods. However, to avoid incurring a high complexity cost,
the above non-iterative algorithm will suffice for now. Let
P(R̄) be the power Tr(F̄F̄H) of the precoder F̄ computed
by the above algorithm for a target rate (R̄). The algorithm
can now be completed by iteratively finding R̄ such that
P(R̄) = Es. Since there is a near-linear relation between
R̄ and log P(R̄), a simple numerical method like the secant
method can be used. Simulations show that convergence is
typically achieved in less than six iterations.

VI. SIMULATION RESULTS

In this section, computer simulation results are presented
to evaluate the performance of the four schemes proposed in
this paper. In the simulations, the 12 × {4, 4, 4} broadcast
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Fig. 6. BER performance comparison for ordered and unordered ZF-based
schemes using THP and 16-QAM.

channel is considered. The elements of the channel matrix H
are assumed to be independent and CSCG with zero mean
and unit variance. The results are based on 3000 Monte Carlo
realizations of H. To compute the BER curves illustrated in
Figures 6, 7 and 10, THP is applied for interference pre-
subtraction at the transmitter. The transmit power is scaled
down by a factor of (M − 1)/M for M-QAM to account for
the THP precoding loss. All the schemes shown use 16-QAM
unless otherwise indicated. Table I gives a summary of the
schemes discussed in this paper, with italics to indicate the
new proposed schemes.

A. ZF-Based Schemes

The ZF schemes are the BD-GMD-based scheme and the
Equal-Rate BD-GMD scheme. In the figures, the solid lines
represent the new schemes while the dotted ones represent
conventional schemes. Also, the squares and triangles indicate
block-equal-rate schemes, while the circles indicate equal-rate
ones. In Figures 7 and 8, all the schemes implement user
ordering.

Figure 6 shows the gains in BER performance due to
ordering users in the scheme. The unordered schemes are rep-
resented by shapes with crosses. Both the ordered BD-GMD
and ordered Equal-Rate BD-GMD showed an improvement of
about 1 dB at BER of 10−4 over their unordered counterparts
respectively. The improvement is more appreciable for the
Equal-Rate ZF-THP [15], with a gain of 6 dB even at BER
of 10−3. This gain in BER performance is due primarily
to the improvement that user ordering has on the channel
gain of the worst subchannel whose BER constitutes a major
part of the average BER. Figure 7 demonstrates the effect
of using different constellations on BER performance. 16-
QAM is used for every user, unless “64,16,4-QAM” is stated,
where the user with the largest channel gain is assigned 64-
QAM, the next user 16-QAM, and the last user 4-QAM. (For
simplicity, this assignment is fixed.) As expected, the BD-
GMD(64,16,4-QAM) experiences a gain of 3 dB at BER of
10−5 over the BD-GMD, while the ZF-THP(64,16,4-QAM)
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TABLE I
A COMPARISON BETWEEN VARIOUS SCHEMES

ZF-based MMSE-based
Block-equal-rate Equal-rate Block-equal-rate Equal-rate

Single User GMD UCD
Multiple Users
- Single Antenna ZF-DPC Equal-Rate ZF-DPC MMSE-DPC -
- Multiple Antennas BD-GMD Equal-Rate BD-GMD BD-UCD Equal-Rate BD-UCD
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Fig. 7. Effect of receiver equalization on BER performance of ZF-based
schemes using THP and user ordering.

sees an improvement of more than 4 dB at BER of 10−3

over the ZF-THP. These gains are achieved without significant
increase in receiver complexity. Also, by fitting the users with
appropriate constellations to suit their channel gains, higher
data rates can be achieved.

Figure 7 also highlights the significant improvement in BER
performance of the new schemes over the conventional ones.
The BD-GMD shows a gain of more than 6 dB at BER of 10−3

over the ZF-THP, while the Equal-Rate BD-GMD also gained
more than 6 dB at BER of 10−4 over the Equal-Rate ZF-
THP. At high SNRs, the steeper gradients of the BER curves
for the new schemes is evidence of the diversity gain which
resulted from linear equalization at the receivers. Figure 8
shows that the achievable sum-rates of the new schemes are
negligibly less than that of the conventional schemes. While
equalization at the mobile users’ side help to increase the
achievable sum-rates for the block diagonal schemes, there is
more freedom for row ordering in the conventional schemes
(12! ≈ 4.8×108 possible permutations) than for user ordering
in the block diagonal schemes (3! = 6 possible permutations).
The gain from ordering slightly overrides the advantage from
receiver equalization. Finally, the performance of the equal-
rate schemes is also compared with that of the block-equal-rate
ones in Figure 7. The Equal-Rate BD-GMD shows a gain of 3
dB at BER of 10−5 over the BD-GMD. For the conventional
Equal-Rate ZF-THP, the gain is even larger, with more than
6 dB improvement at BER of 10−3 over the ZF-THP. Note
that for the equal-rate schemes, the BER performance of every
user is the same as that shown in the figures, while for the
block-equal-rate schemes, the BER curve is more indicative of
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Fig. 8. Achievable sum-rate for ZF-based schemes with DPC and user
ordering.

the performance of the worst user. Thus, the gains described
above represents the improvements experienced by the worst
user when an equal-rate criterion is imposed. From Figure 8,
the additional equal-rate criteria causes a slight loss of 1 dB
in achievable sum-rate. This loss is due to the allocation of
more power to the worst user in order to fulfill the equal-rate
criterion.

B. MMSE-Based Schemes

The MMSE schemes are the BD-UCD and the Equal-Rate
BD-UCD. In Figures 9 and 10, the solid lines represent the ZF-
based schemes, while the dashed lines represent the MMSE-
based ones. Again, the triangles indicate the block-equal-rate
schemes and the circles the equal-rate ones.

In Figure 9, there is only a tiny improvement in achievable
sum-rate of the BD-UCD over the MMSE-DPC. This can
be understood by studying the effect of pre-equalization on
the dual uplink channel capacity. The power loading aspect
of pre-equalization has a much greater effect on capacity
than the beam-forming aspect. Thus, in the dual broadcast
case, although MMSE-DPC does not enjoy equalization at the
receivers, it does not suffer any significant loss in capacity.
However, in Figure 10, the BD-UCD shows a dramatic im-
provement in BER performance over the MMSE-THP, with
more than 6 dB gain at BER of 10−3. This is because of the
diversity gain afforded by linear equalization at the receivers.
Next, the advantage of using a MMSE-based scheme against
its ZF-based counterpart is shown. The BD-UCD enjoys a
slight 1.5 dB gain in achievable sum-rate over the BD-GMD at
the low SNR region. As expected, their performance converges
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Fig. 10. BER performance comparison for ZF-based and MMSE-based
schemes using THP and 16-QAM.

with increasing SNR. Similarly, the achievable sum-rates of
the Equal-Rate BD-GMD and Equal-Rate BD-UCD converge
at high SNR. In terms of BER performance, the effect of
error minimization is seen more clearly. In Figure 10, the
BD-UCD consistently shows a 2 dB gain in BER performance
over the BD-GMD at all SNRs. Meanwhile, the Equal-Rate
BD-UCD shows an improvement of as much as 4.5 dB
over the Equal-Rate BD-GMD at BER of 10−6. Finally, the
feasibility of providing equal rates for all users is studied. In
Figure 9, it is seen that the Equal-Rate BD-UCD achieves
the same sum-rates as the BD-UCD at low SNR. Capacity
in this SNR region is affected more by noise than by equal-
rate constraints. At high SNR, the Equal-Rate BD-UCD only
suffers a 1.5 dB loss. This also shows that the near-optimal
iterative beamforming algorithm in Section V-C does not
experience much performance loss. In Figure 10, the Equal-
Rate BD-UCD demonstrates its superior BER performance
over the BD-UCD, with about 4 dB gain at BER of 10−5.
This is because its worst subchannel is greatly elevated by the
equal-rate constraint.

VII. CONCLUSION

We have proposed a novel block diagonal geometric mean
decomposition (BD-GMD) for the MIMO broadcast channel.
This decomposition creates spatial subchannels with identical
SNRs/SINRs for each user. This allows the use of equal-
rate coding which has benefits for the system implementation,
especially in the design of modulation and coding schemes.
Four applications based on the BD-GMD were proposed:
BD-GMD, Equal-Rate BD-GMD, BD-UCD, and Equal-Rate
BD-UCD, all of which apply DPC at the transmitter for
interference pre-subtraction. The first two schemes are ZF-
based schemes, while the later two are MMSE-based. Also, for
each ZF and MMSE case, the first scheme is block-equal-rate
while the second scheme is equal-rate. In the ZF schemes, user
ordering is exploited to gain improvements in achievable sum-
rates and user fairness. The optimal power allocation needed to
provide equal rates for every user was also derived. As for the
MMSE schemes, the BD-UCD achieves the broadcast channel
capacity, while the Equal-Rate BD-UCD provides all users
with equal rates without much loss of sum rate. Simulation
results have shown that the new schemes exhibit excellent
BER and sum rate properties.
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APPENDIX A
PROOF OF THEOREM 1

Proof: Write F = αF̃. The condition Tr(FHF) ≤ Es

can now be expressed as

α2 ≤ Es

Tr(F̃HF̃)
, (47)

so maximizing α is the same as minimizing Tr(F̃HF̃). Thus,
(25) is equivalent to the problem

minimize Tr(F̃HF̃)
subject to J ∈ L , A ∈ B ,

AHF̃ = J ,

‖A(i, :)‖ = 1 for 1 ≤ i ≤ NR . (48)

The Lagrangian L (F̃,A,Θ,Γ) of this problem is

Tr(F̃HF̃− Re(2ΘH(AHF̃− I)) + Γ(AAH − I)) , (49)

where Θ, Γ are Lagrange multipliers, Θ is upper triangular,
Γ is a real-valued diagonal matrix and Re(X) is the real-part
of a complex matrix X. If F̃ and A are optimal, then they
satisfy

∇F̃L = 0 =⇒ F̃ = (AH)HΘ (50)

∇AiL = 0 =⇒ [Θ(HF̃)H ]i = ΓiAi for 1 ≤ i ≤ K ,
(51)
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where Ai, Γi, and [Θ(HF̃)H ]i are the i-th diagonal block of
each matrix respectively. We begin by noting the following
two important relations

JHΘ = (F̃HHHAH)Θ

= F̃H(HHAHΘ)

= F̃HF̃ (52)

ΓiAiAH
i = [ΘF̃HHH ]iAH

i

= [ΘF̃HHHAH ]i
= [ΘJH ]i
= ΘiJH

i (53)

Lemma 1: There exists an optimal solution to (48) where
A is unitary.

Proof: Pick any optimal solution to (48), and consider its
matrix A. From the third line in (48), det(J) �= 0 implies that
A, H and F̃ have full rank. Similarly, by (50), det(Θ) �= 0.
Then, by (53), det(Γi) �= 0. Therefore, the diagonal elements
of Γi are non-zero.

From (53), AiAH
i = Γ−1

i ΘiJH
i is upper triangular. On

the other hand, AiAH
i = [AiAH

i ]H is lower triangular. Thus,
AiAH

i must be diagonal. Since the rows of Ai are of unit
norm, we have AiAH

i = I so Ai is unitary. Since Ai is
unitary for all i, the lemma follows.

Lemma 2: There exists an optimal solution to (48) where
A is unitary and F̃ = Q̃Ω̃ where Q̃ has orthonormal columns
and Ω̃ is diagonal with non-negative real elements.

Proof: Using Lemma 1, pick any optimal solution to (48)
in which A is unitary. From (52), we have F̃HF̃ = JHΘ
which is upper triangular. On the other hand, F̃HF̃ = [F̃H F̃]H

is lower triangular, so F̃HF̃ must be diagonal. Furthermore,
we can write F̃HF̃ = Ω̃2 where Ω̃ is the diagonal matrix of
the column norms of F̃, so Ω̃ has non-negative real elements.
Let Q̃ be the matrix of the unit column vectors of F. Hence,
F̃ = Q̃Ω̃. It is easy to check that Q̃HQ̃ = I from F̃HF̃ = Ω̃2,
so Q̃ has orthonormal columns and this completes the lemma.

As a result of these two lemmas, and the third line in (48),

AHF̃Ω̃−1 = AHQ̃ = JΩ̃−1 , and

H = AH(JΩ̃−1)Q̃H . (54)

Define L̃ = JΩ̃−1. Denote each diagonal block of L̃ cor-
responding to user i as [L̃]i. It follows that det([L̃]i) =
det([Ω̃−1]i). Define Ĥi = [HT

1 , . . . ,HT
i ]T . Since A is block

diagonal unitary and Q̃ has orthonormal columns, it can be

seen that det([L̃]i) =
√

det(ĤiĤH
i )

det(Ĥi−1ĤH
i−1)

. Thus, det([Ω̃]i) is

a constant determined by the H. As Tr(F̃H F̃) = Tr(Ω̃2),
Tr(F̃HF̃) will be minimized when the diagonal elements of
[Ω̃]i are equal. Since L̃ = JΩ̃−1, the diagonal elements of
[L̃]i are equal. Therefore, referring to (54), the BD-GMD

(H = PLQH ) provides the solution to the optimization (48),
where

L̃ = JΩ̃−1 = L , Q̃ = Q , and A = PH . (55)

Consequently, Ω̃−1 = diag(L) = Λ, and J = LΛ−1.

F = αF̃ = αQΛ−1 and α2 =
Es

Tr(F̃F̃H)
=

Es

Tr(Λ−2)
.

(56)

This completes the proof for theorem 1.
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