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ABSTRACT

Matrix decompositions play an important role in analyzing the
capacity and designing the transceiver for multiple input mul-
tiple output (MIMO) channels. In the single user case, by re-
lying on the decision feedback equalizer (DFE) at the receiver
or Tomlinson-Harashima precoding (THP) at the transmitter,
the geometric mean decomposition (GMD) can be used to cre-
ate identical signal-to-noise ratios (SNR) for each decoupled
subchannel. In this paper, we propose a new matrix decom-
position, called the block-diagonal GMD (BD-GMD), for the
multiuser MIMO broadcast channel. Applying THP at trans-
mitter and linear equalization in each of the receivers, each
user can achieve identical SNRs for its subchannels, thus equal-
rate coding can be applied for each user. Furthermore, by
using transmit power control and the BD-GMD, we design a
scheme that achieves equal-rate coding for the subchannels of
all users. Computer simulations have shown that the proposed
schemes have better BER performances than zero-forcing THP
(ZF-THP) and equal-rate ZF-THP schemes.

I. INTRODUCTION

Wireless transmissions via multiple input multiple output
(MIMO) antennas have received considerable attention during
the past decade due to the promising capacity gain achieved
through MIMO channels without relying on power increase or
bandwidth expansion [1]. For single user MIMO, when chan-
nel state information (CSI) is known, the singular value decom-
position (SVD) can be used to decompose the MIMO channel
into a set of single input single output (SISO) subchannels, for
which water-filling can be used to maximize the channel ca-
pacity. As each subchannel has a different signal-to-noise ratio
(SNR) value, variable-rate coding is usually used among the
data streams, which increases the transceiver complexity.

In [4], the authors proposed a geometric mean decomposi-
tion (GMD) for the channel matrix of point-to-point MIMO.
Using GMD, a scheme combining linear precoding and non-
linear DFE receivers achieves identical SNR for all subchan-
nels. Alternatively, dirty paper coding (DPC) can be applied
with GMD to pre-subtract the interference before transmission.
THP, a simple suboptimal implementation of DPC which in-
creases transmit power slightly, can also be used [5]. For both
DFE and DPC, equal-rate (ER) codes can be applied to all sub-
channels.

In this paper, we consider the multiuser MIMO broadcast
channel, and propose a new matrix decomposition, called
block-diagonal geometric mean decomposition (BD-GMD).
Two applications of the proposed matrix decomposition are

considered. In the first application, BD-GMD is combined with
DPC to give a scheme in which the data streams of each user
can be allocated with equal-rate codes. In the second appli-
cation, BD-GMD is combined with DPC as well as transmit
power control so that equal-rate codes can be applied to the
subchannels for all the users.

This paper is organized as follows. The multiuser MIMO
downlink channel model is presented in Section II, where the
conventional schemes using THP are also reviewed. The math-
ematical formulation and algorithm of BD-GMD is presented
in Section III. The BD-GMD-DPC and ER-BD-GMD-DPC
transceiver designs are described in Sections IV and V respec-
tively. Subsequently, simulations in Section VI compare these
algorithms with ZF-THP. Finally, the conclusions are drawn in
Section VII.

The following notations are used. The boldface is used to de-
note matrices and vectors. Let Tr(S), ST , SH and S−1 denote
the matrix trace, transpose, conjugate transpose and inverse, re-
spectively, for a matrix, S. ‖ · ‖ denotes the vector Euclidean
norm, and E[·] the expectation operator. diag(S) is the diagonal
matrix with the diagonal elements of S.

II. MULTIUSER COMMUNICATIONS

A. Channel Model

Let us consider an infrastructure based system with one base
station (BS) and K mobile users. The BS is equipped with
NT antennas, and the mobile users have n1, n2, . . . , nK an-
tennas respectively. Let this system be denoted by NT ×
{n1, n2, . . . , nK}. We are now interested in the broadcast
channel from the BS to the K users. Let NR = n1 + n2 +
. . .+nK be the total number of receiver antennas. Denote x as
the NT × 1 transmitted signal vector at the BS; y the NR × 1
received signal vector with y = [yT

1 , · · · ,yT
K ]T , where yi, of

dimension ni × 1, is the received signal vector of user k. The
input-output relation can be represented as

y = Hx + u. (1)

The noise vector u is assumed to be a zero-mean, circularly
symmetric complex Gaussian (CSCG) vector with E[uuH ] =
N0I, and u is independent of x. Assume also that the total
transmit power is Es = E[‖x‖2], and let ρ = Es/N0 be the
SNR.

In the downlink broadcast channel, there is usually no col-
laboration between the mobile users, so the users do not have
signal information from the antennas belonging to other users.
This makes interference cancelation and equalization at the re-
ceiver side difficult. Thus, it is important to have CSI at the
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transmitter, so that interference cancelation via dirty paper pre-
coding can be performed.

Conventional precoding schemes, such as zero-forcing THP
(ZF-THP) [5] and “novel” THP (N-THP) [3], treat multiple an-
tennas of different users as different virtual users. The first,
ZF-THP, is based on the QR decomposition HH = QR, or
H = RHQH . The linear precoder Q is applied before trans-
mission so that x = Qs, where s is the vector of symbols to be
sent. This transforms the channel to y = RHs + u, on which
THP is applied to pre-subtract the interference represented by
the lower triangular matrix RH . Thus, we have decoupled sub-
channels, yi = risi + ui, where ri is the ith diagonal element
of R.

In N-THP [3], the authors considered precoding matrices F
such that the resulting channel matrix HF is lower triangu-
lar and equal diagonal. Here, F need not be unitary but only
has to satisfy the power constraint Tr(FHF) ≤ Es. The pre-
coder F that maximizes the equal diagonal element r in HF
can be found algorithmically. The scheme now only needs
to perform THP to cancel the interference represented by the
lower triangular matrix HF before precoding with F and trans-
mitting the signal. This scheme gives independent subchannels
yi = rsi+ui on which equal-rate codes can be applied. Hence,
we shall refer to the N-THP scheme as equal-rate ZF-THP (ER-
ZF-THP).

III. BLOCK-DIAGONAL GMD

Both ZF-THP and ER-ZF-THP assumes no collaboration be-
tween the receive antennas of each user. In the case where
some of the mobile users have multiple antennas, the perfor-
mance gain can be expected by doing equalization on the re-
ceiver side. This equalization can only be done for the data
streams of the same user, but not among the users. We can rep-
resent it as a premultiplication of the receive signal y(n) by a
matrix A of the block-diagonal form

A =




A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AK


 , (2)

where each Ai is the ni × ni equalization matrix of user i.
Each row of Ai is required to be of unit norm so that the noise
vector u is not amplified by A. Note that the situation where
the mobile users have single antennas is represented by the case
A = I. The matrix A gives us the equivalent channel matrix
AH which can then be canceled by transmitter techniques such
as ZF-THP or ER-ZF-THP.

Consider the QR-decomposition AH = RHQH . Since the
aim is to let each user have equal rates for its data streams, it is
natural to ask if it can be accomplished by choosing an appro-
priate equalization matrix A. To simplify this problem, assume
further that A is unitary. Our problem can now be stated as fol-
lows.

A. Mathematical Formulation

Let H be an NR × NT matrix, and n1, ..., nK a sequence of
integers such that NR = n1 + n2 + . . . + nK . We want to find
a matrix decomposition

H = PLQH , (3)

such that Q is a unitary NR × NT matrix and P is a block-
diagonal matrix of the form in (2) where each block Pi is a
unitary ni × ni matrix. L is a lower triangular matrix, whose
diagonal elements are equal in blocks of n1, ..., nK elements
respectively.

B. Algorithm

Write the product H = PLQH as[
H1

H
]

=
[

P1 0
0 P

] [
L1 0
L L

] [
QH

1

QH

]
, (4)

where H1 and QH
1 are n1×NT submatrices, and L1 and P1 are

n1×n1 square matrices. Expanding (4), we have the following
two equations

H1 = P1L1QH
1 , (5)

H = PLQH
1 + PLQH . (6)

From equation (5), we see that by using the Generalized Trian-
gular Decomposition (GTD) [2], almost any desired diagonal
elements in L1 can be obtained. In particular, the diagonal ele-
ments of this submatrix can be made equal by using the GMD,
a special case of the GTD. Now, since Q is unitary, the sub-
matrices Q1 and Q are orthonormal to each other. Thus, from
equation (6), the projection matrix I − Q1QH

1 is used to get

H(I − Q1QH
1 ) = PLQH . (7)

Here, the right side of (7) has the same form as equation (3),
so we can proceed recursively. Finally, to solve for L, equation
(6) is multiplied by PH and Q1, giving

L = PHHQ1. (8)

We shall refer to the decomposition that achieves equal diago-
nal elements in each block of L as the block-diagonal geomet-
ric mean decomposition (BD-GMD).

C. Diagonal Elements

Consider a BD-GMD decomposition H = PLQH . Let the
diagonal elements of the i-th block of L be ri. To calculate
each ri, equations (4) and (5) are generalized to get[

Ĥi

H
]

=
[

P̂i 0
0 P

] [
L̂i 0
L L

] [
Q̂H

i

QH

]
, (9)

Ĥi = P̂iL̂iQ̂H
i , (10)

where the submatrices Ĥi, P̂i, L̂i and Q̂H
i each have

∑i
j=1 nj

rows. Because P̂i and Q̂H
i are unitary, (10) shows that the

singular values of Ĥi and L̂i must be the same. Thus,

det(ĤH
i Ĥi) = det(L̂H

i L̂i) =
i∏

j=1

r
2nj

j . (11)
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Figure 1: Block Diagram of the BD-GMD-DPC scheme imple-
menting THP and user ordering.

Therefore, we have

ri = 2ni

√√√√ det(ĤH
i Ĥi)

det(ĤH
i−1Ĥi−1)

. (12)

D. Ordering the Users

The diagonal elements of L are usually in decreasing order be-
cause LQH is the QR-decomposition of PHH. The first ele-
ment can often be many times that of the last one, so the first
user enjoys much better performance than the last user. Equa-
tion (12) tells us that the diagonal elements ri depend on the
ordering of the rows of H, or in other words, the ordering of
the users. Our hope is to improve the fairness of the scheme by
ordering the users to increase the size of the last few diagonal
elements.

A method inspired by that used in the BLAST [6] system
is used. First, note that det(ĤH

i−1Ĥi−1) does not change with

the order of the rows of Ĥi−1. Therefore, from (12), the value
of rK depends only on the choice of HK and not the order of
the first K − 1 users. Thus, to maximize rK , HK is chosen
to minimize det(ĤH

K−1ĤK−1). Similarly, HK−1 is chosen to

minimize det(ĤH
K−2ĤK−2) and so on. Let the decomposition

that optimizes the diagonal elements in such a way be called
the ordered BD-GMD.

Let {π1, π2, . . . , πK} be the optimal ordering of the users
where what was previously the π1-th user is now the first user,
and so on. Since the ordering of the users result in the ordering
of the rows of H, this ordering may also be represented by a
permutation matrix D such that DH = PLQH . Here, the i-th
block Pi of P has dimensions nπi

× nπi
.

IV. BD-GMD-DPC

In this section, the transceiver design method using BD-GMD,
called BD-GMD-DPC, is presented.

A. Transceiver Design

Suppose s = [sT
1 , · · · , sT

K ]T is the unordered vector of infor-
mation symbols to be sent, where si is the information symbol
vector of user i. First, let DH = PLQH be the ordered BD-
GMD of H. Write L = ΛB with Λ = diag(L), and B a
lower triangular matrix with unit diagonal. Multiplying (1) by
D gives

ỹ = PLQHx + ũ, (13)

where ỹ is the reordered received signal vector. Let s̃ = Ds
be the reordered information symbol vector. Using x = Qs̃
and z̃ = PH ỹ for the transmit and receive equalization respec-
tively, transforms the channel to

z̃ = Ls̃ + ũ′. (14)

Now DPC is performed at the transmitter to pre-subtract the
interference represented by L. As a result, user πi enjoys nπi

independent and equivalent subchannels of the form

z = ris + u, (15)

where ri is the diagonal element of the i-th block of L.
Suppose the total transmit power Es is distributed equally

among the M transmit antennas. Then, the achievable sum-
rate for the scheme is given by

C =
K∑

i=1

nπi
log2(1 +

Es

N0NT
r2
i ). (16)

Fig. 1 shows the block diagram of a scheme that uses the or-
dered BD-GMD and THP as a suboptimal implementation of
DPC. Here, PH

i and ΛH
i are the sub-blocks of P and Λ.

To improve the performance of the scheme, different code-
books can be applied to each user. The base station only needs
to inform each user which codebook to use before data trans-
mission, depending on the rank of the user in the optimal order-
ing of all the users. The user then uses the same codebook for
all his subchannels since the subchannels are equivalent. Com-
pared to a ZF-THP scheme which uses multiple codebooks, one
for each subchannel, the complexity of each mobile receiver is
greatly reduced.

V. EQUAL RATE BD-GMD-DPC

While BD-GMD-DPC achieves equal rate for the sub-channels
of each user, the achievable rates for different users are differ-
ent. In this section, relying on transmit power control, ER-BD-
GMD-DPC is proposed to achieve equal rate for all subchan-
nels across all the users.

A. Mathematical Formulation

ER-ZF-THP [3] is the result of considering the following opti-
mization problem:

maximize α

subject to HF̌ = αJ

J ∈ L

Tr(F̌F̌
H

) ≤ Es (17)

where L is the set of lower triangular matrices with unit diag-
onal. Here, F̌ represents the precoding matrix and J the inter-
ference matrix with which THP is performed.
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The power allocation for our broadcast situation can be for-
mulated as the following optimization problem:

maximize α

subject to AHF̃ = αJ

Tr(F̃F̃H) ≤ Es

‖A(i, :)‖ = 1 for 1 ≤ i ≤ NR

J ∈ L, A ∈ B, (18)

where B is the set of block-diagonal matrices of the form in
(2). Here, F̃ represents the precoding matrix, and A the re-
ceive equalization matrix, which may not be unitary. We as-
sume ‖A(i, :)‖ = 1 for each row A(i, :) of A so that the chan-
nel noise is not amplified by A. Write F̃ = αF. The condition
Tr(F̃F̃H) ≤ Es can then be expressed as

α2 ≤ Es

Tr(FFH)
, (19)

so maximizing α is the same as minimizing Tr(FFH). Thus,
(18) is equivalent to the following optimization:

minimize Tr(FFH)
subject to AHF = J

‖A(i, :)‖ = 1 for 1 ≤ i ≤ NR

J ∈ L,A ∈ B. (20)

Solving the Lagrangian of this problem gives

F = QΛ−1, A = PH , J = LΛ−1, (21)

where H = PLQH is the BD-GMD of H, and Λ = diag(L).
We call the construction given in (21) the equal-rate BD-GMD.
In the case where n1 = n2 = . . . = nK = 1, we have ER-ZF-
THP.

B. Transceiver Design

The precoding matrix is F̃ = αF = αQΛ−1 where

α2 =
Es

Tr(FFH)
=

Es

Tr(Λ−2)
(22)

while the receive equalization matrix is A = PH . This trans-
forms the channel to z = αJs + u′. DPC is then done at the
transmitter to cancel the interference. As a result, every user
enjoys independent and equivalent subchannels of the form

z = αs + u. (23)

The achievable sum-rate for the scheme is given by

C = NR log2(1 +
α2

N0
). (24)

Hence, given a fixed order of users for dirty paper coding at the
base station, the above equal-rate BD-GMD scheme optimizes
the zero-forcing linear beamforming vectors and power alloca-
tion required to achieve maximum throughput and equal rates
for every subchannel of every user.

Figure 2: ER-BD-GMD-DPC implementing user ordering and
THP.

In (22), the diagonal values r1, . . . , rNR
of Λ must satisfy

r1r2 . . . rNR
= det(H). Given this condition, the channel gain

α is maximized when r1 = . . . = rNR
. In general, α increases

when we decrease the spread among r1, . . . , rNR
. Thus, we can

expect some performance gain by performing the ordered BD-
GMD to reduce this spread. Fig. 2 shows the block diagram of
a scheme that performs the equal-rate ordered BD-GMD and
THP to implement DPC.

VI. SIMULATION RESULTS

In this section, computer simulation results are presented to
compare the performance of BD-GMD-DPC with ZF-THP, as
well as their equal-rate versions. We consider the case of 12 ×
{4, 4, 4} broadcast channel. We assume that the elements of the
channel matrix H are independent complex Gaussian random
variables with zero mean and unit variance.

In computing the BER performance, THP is used as a sub-
optimal implementation of DPC, and power is scaled down by
a factor of (M − 1)/M (for M -QAM modulation) to account
for the slightly higher average power required by THP [5].

Fig. 3 shows the performance comparison for different
schemes with and without ordering. Here “uo” and “o” de-
note “unordered” and “ordered”, respectively and 16-QAM is
used for all the subchannels. It is seen that for the BD-GMD-
THP and the ER-BD-GMD-THP, there is a 1 dB improvement
at BER of 10−4 over their unordered counterparts. For ER-ZF-
THP, ordering the users provides a very large gain of 6 dB at
BER of 10−3. The gain in BER performance is because order-
ing improves the channel gain of the worst subchannel, and the
average BER performance is due primarily to the performance
of the worst subchannel.

Fig. 4 shows the BER improvement coming from equaliza-
tion at the receiver. All of the schemes perform user ordering.
The notation “16” means that 16-QAM is used for every user,
while “mc” means that multiple constellations are used, with
the user with the largest channel gain being assigned 64-QAM,
the next user 16-QAM, and the last user 4-QAM.

The solid line denoting the BD-GMD-THP(o,16) scheme is
lower than the dashed line denoting the ZF-THP(o,16), show-
ing a BER performance gain of more than 6 dB at BER of 10−3.
It can be seen that the BD-GMD schemes have a higher slope
than the ZF-THP schemes. This is due to the higher diversity
gain achieved by allowing equalization at the receivers.

The ER-BD-GMD-THP(o,16) scheme has a BER perfor-
mance gain of 2.6 dB over the BD-GMD-THP(o,16) at BER
of 10−4. This is because the performance of the worst sub-



The 17th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’06)

15 18 21 24 27 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

SNR (dB)

 

 

BD−GMD−THP(uo,16)
BD−GMD−THP(o,16)
ER−BD−GMD−THP(uo,16)
ER−BD−GMD−THP(o,16)
ER−ZF−THP(uo,16)
ER−ZF−THP(o,16)

Figure 3: BER performance of ordered and unordered schemes.
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Figure 4: Effect of receiver equalization and multiple constel-
lations on BER performance.

channel is mitigated by the equal-rate property. The BD-GMD-
THP(o,mc) has a gain of 2.2 dB over BD-GMD-THP(o,16) be-
cause it allocates only 4-QAM for the weakest user.

Fig. 5 shows the achievable sum rates for ER and non-ER
schemes, where all schemes are ordered and assume perfect
DPC with Gaussian input. There is a slight loss in achievable
rate when we demand fair treatment of the users via the ER
schemes. This is because the ER schemes use channel inver-
sion for power control.

VII. CONCLUSION

In this paper, we have presented the block-diagonal GMD for
the multiuser MIMO downlink. Two schemes based on this
BD-GMD have been proposed, using DPC at the transmitter –
BD-GMD-DPC and ER-BD-GMD-DPC. The first scheme al-
lows equal-rate coding for the subchannels of each user, while
the second scheme allows equal-rate coding for every subchan-
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Figure 5: Achievable sum rates of proposed schemes.

nel of every user.
Improvements in performance of the schemes was achieved

by user ordering, use of multiple constellations and solving for
optimal power control. Simulations have showed that both the
two schemes have better BER performance than ZF-THP and
ER-ZF-THP, respectively.
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